Type I-B Main-Chain Polyrotaxane Network
Wenbin Wang
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
Search for more papers by this authorCorresponding Author
Dr. Ruixue Bai
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorDr. Chunyu Wang
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
Search for more papers by this authorDr. Li Yang
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
Search for more papers by this authorDr. Lin Cheng
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
Search for more papers by this authorProf. Zhaoming Zhang
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Wei Yu
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Xuzhou Yan
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorWenbin Wang
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
Search for more papers by this authorCorresponding Author
Dr. Ruixue Bai
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorDr. Chunyu Wang
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
Search for more papers by this authorDr. Li Yang
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
Search for more papers by this authorDr. Lin Cheng
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
Search for more papers by this authorProf. Zhaoming Zhang
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Wei Yu
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Xuzhou Yan
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Polyrotaxanes (PRs) are recognized for their outstanding conformational flexibility, making them ideal candidates for the design of high-performance mechanically interlocked materials. However, Type I-B main-chain PRs, featuring multiple wheels and stoppers along the polymer backbone, remain underexplored due to the challenges in their design and synthesis. Herein, we introduce a facile “host−guest recognition followed by click polymerization” strategy for the synthesis of Type I-B main-chain PR, which is subsequently employed to prepare the first-ever Type I-B main-chain PR network (PRN). Compared to the control whose wheels are nonslidable under applied force, the distinctive dynamic behaviors of Type I-B main-chain PR impart extraordinary mechanical enhancements to PRN, with fracture strain, toughness, and puncture resistance all surging by more than 27-fold. Moreover, the combination of the host−guest recognition and multiple stoppers endows the PRN with great self-recovery capability due to the restriction of the motion range of mechanical bonds. This work not only presents a novel strategy for designing and synthesizing Type I-B main-chain PR networks but also highlights the pivotal role of Type I-B main-chain PRs in enhancing material performance, offering valuable insights for advancing the development of dynamic polymer materials.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
Filename | Description |
---|---|
ange202507192-supp-0001-SuppMat.docx2.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. F. Hart, J. E. Hertzog, P. M. Rauscher, B. W. Rawe, M. M. Tranquilli, S. J. Rowan, Nat. Rev. Mater. 2021, 6, 508–530.
- 2L. Chen, X. Sheng, G. Li, F. Huang, Chem. Soc. Rev. 2022, 51, 7046–7065.
- 3S. Ghiassinejad, M. Ahmadi, E. van Ruymbeke, C.-A. Fustin, Prog. Polym. Sci. 2024, 155, 101854.
- 4Y. Wang, Y. Ding, Y. Liu, S. Qu, W. Wang, W. Yu, Z. Zhang, F. Liu, X. Yan, Sci. China Chem. 2024, 67, 4234–4241.
- 5Z. Zhang, J. Zhao, X. Yan, Acc. Chem. Res. 2024, 57, 992–1006.
- 6L. Fang, M. A. Olson, D. Benítez, E. Tkatchouk, W. A. Goddard Iii, J. F. Stoddart, Chem. Soc. Rev. 2010, 39, 17–29.
- 7J. Sawada, D. Aoki, S. Uchida, H. Otsuka, T. Takata, ACS Macro Lett. 2015, 4, 598–601.
- 8Q. Wu, P. M. Rauscher, X. Lang, R. J. Wojtecki, J. J. de Pablo, M. J. A. Hore, S. J. Rowan, Science 2017, 358, 1434–1439.
- 9X. Wang, W. Li, W. Wang, H. Yang, Acc. Chem. Res. 2021, 54, 4091–4106.
- 10J. Zhao, Z. Zhang, C. Wang, X. Yan, CCS Chem. 2024, 6, 41–56.
- 11W. Wang, S. Zhou, X. Yu, Q. Guo, Y. Ma, J. Song, L. Zhang, X. Yan, L. Han, Q. Liao, X. Li, W. Zhang, Y. Mai, S. Zhang, S. Che, H. Yang, X. Fu, M. Wang, CCS Chem. 2024, 6, 2084–2109.
- 12R. Bai, W. Wang, W. Gao, Z. Zhang, W. Yu, X. Yan, Angew. Chem. Int. Ed. 2025, 64, e202423578.
- 13A. Harada, A. Hashidzume, H. Yamaguchi, Y. Takashima, Chem. Rev. 2009, 109, 5974–6023.
- 14M. Arunachalam, H. W. Gibson, Prog. Polym. Sci. 2014, 39, 1043–1073.
- 15J. Araki, K. Ito, Soft Matter 2007, 3, 1456–1473.
- 16Y. Qiu, B. Song, C. Pezzato, D. Shen, W. Liu, L. Zhang, Y. Feng, Q. Guo, K. Cai, W. Li, H. Chen, M. T. Nguyen, Y. Shi, C. Cheng, R. D. Astumian, X. Li, J. F. Stoddart, Science 2020, 368, 1247–1253.
- 17R. Bai, W. Wang, W. Gao, M. Yang, X. Zhang, C. Wang, Z. Fan, L. Yang, Z. Zhang, X. Yan, Angew. Chem. Int. Ed. 2024, 63, e202410127.
- 18J. S. W. Seale, B. Song, Y. Qiu, J. F. Stoddart, J. Am. Chem. Soc. 2022, 144, 16898–16904.
- 19J. S. W. Seale, Y. Feng, L. Feng, R. D. Astumian, J. F. Stoddart, Chem. Soc. Rev. 2022, 51, 8450–8475.
- 20H. Zhou, Q. Zong, Y. Han, C. Chen, Chem. Commun. 2020, 56, 9916–9936.
- 21L. Chen, R. Nixon, G. De Bo, Nature 2024, 628, 320–325.
- 22F. Huang, H. W. Gibson, Prog. Polym. Sci. 2005, 30, 982–1018.
- 23C. Gong, Q. Ji, T. E. Glass, H. W. Gibson, Macromolecules 1997, 30, 4807–4813.
- 24Y. Kohsaka, Y. Koyama, T. Takata, Angew. Chem. Int. Ed. 2011, 50, 10417–10420.
- 25Y. Okumura, K. Ito, Adv. Mater. 2001, 13, 485–487.
- 26Y. Noda, Y. Hayashi, K. Ito, J. Appl. Polym. Sci. 2014, 131, 40509.
- 27L. Yang, Y. Wang, G. Liu, J. Zhao, L. Cheng, Z. Zhang, R. Bai, Y. Liu, M. Yang, W. Yu, X. Yan, Angew. Chem. Int. Ed. 2024, 63, e202410834.
- 28Y. Akae, J. Sawada, K. Nakajima, T. Takata, Angew. Chem. Int. Ed. 2023, 62, e202303341.
- 29X. Yang, L. Cheng, Z. Zhang, J. Zhao, R. Bai, Z. Guo, W. Yu, X. Yan, Nat. Commun. 2022, 13, 6654.
- 30C. Gong, H. W. Gibson, Macromol. Chem. Phys. 1997, 198, 2321–2332.
- 31C. Gong, H. W. Gibson, Macromolecules 1996, 29, 7029–7033.
- 32T. Ikeda, M. Higuchi, D. G. Kurth, J. Am. Chem. Soc. 2009, 131, 9158–9159.
- 33H. W. Gibson, H. Wang, Z. Niu, C. Slebodnick, L. N. Zhakharov, A. L. Rheingold, Macromolecules 2012, 45, 1270–1280.
- 34Y. Wang, Z. Zhang, H. Zhang, J. Zhao, G. Liu, R. Bai, Y. Liu, W. You, W. Yu, X. Yan, Chem 2023, 9, 2206–2221.
- 35M. Yang, S. Chen, Z. Zhang, L. Cheng, J. Zhao, R. Bai, W. Wang, W. Gao, W. Yu, X. Jiang, X. Yan, Nat. Commun. 2024, 15, 5760.
- 36Y. Wang, L. Yang, L. Cheng, J. Zhao, R. Bai, W. Wang, S. Qu, Z. Zhang, W. Yu, X. Yan, Sci. China Chem. 2024, 67, 3414–3422.
- 37C. Wang, B. Gao, F. Fang, W. Qi, G. Yan, J. Zhao, W. Wang, R. Bai, Z. Zhang, Z. Zhang, W. Zhang, X. Yan, Angew. Chem. Int. Ed. 2024, 63, e202404481.
- 38H. M. Wyss, K. Miyazaki, J. Mattsson, Z. Hu, D. R. Reichman, D. A. Weitz, Phys. Rev. Lett. 2007, 98, 238303.
- 39K. Liu, L. Cheng, N. Zhang, H. Pan, X. Fan, G. Li, Z. Zhang, D. Zhao, J. Zhao, X. Yang, Y. Wang, R. Bai, Y. Liu, Z. Liu, S. Wang, X. Gong, Z. Bao, G. Gu, W. Yu, X. Yan, J. Am. Chem. Soc. 2021, 143, 1162–1170.
- 40Y. Wang, H. Zhang, Z. Zhang, J. Zhao, R. Bai, Y. Liu, X. Zhang, X. Yan, Aggregate 2022, 3, e206.
- 41L. Chen, W. You, J. Wang, X. Yang, D. Xiao, H. Zhu, Y. Zhang, G. Li, W. Yu, J. L. Sessler, F. Huang, J. Am. Chem. Soc. 2024, 146, 1109–1121.
- 42T. L. Sun, T. Kurokawa, S. Kuroda, A. B. Ihsan, T. Akasaki, K. Sato, M. A. Haque, T. Nakajima, J. P. Gong, Nat. Mater. 2013, 12, 932–937.
- 43R. Bai, Z. Zhang, W. Di, X. Yang, J. Zhao, H. Ouyang, G. Liu, X. Zhang, L. Cheng, Y. Cao, W. Yu, X. Yan, J. Am. Chem. Soc. 2023, 145, 9011–9020.
- 44Y. Wang, J. Deng, J. Zhao, Y. Ding, L. Yang, Z. Zhang, X. Yan, Chin. J. Polym. Sci. 2024, 42, 1536–1544.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.