Reengineering of a Proteomimetic Pan-Ras Inhibitor into a Ras Degrader
Joseph F. Ongkingco
Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003 USA
Both authors contributed equally to this work.
Search for more papers by this authorDr. Seong Ho Hong
Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003 USA
Both authors contributed equally to this work.
Search for more papers by this authorEugene D. Toth
Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003 USA
Search for more papers by this authorThu Nguyen
Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003 USA
Search for more papers by this authorCorresponding Author
Prof. Paramjit S. Arora
Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003 USA
E-mail: [email protected]
Search for more papers by this authorJoseph F. Ongkingco
Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003 USA
Both authors contributed equally to this work.
Search for more papers by this authorDr. Seong Ho Hong
Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003 USA
Both authors contributed equally to this work.
Search for more papers by this authorEugene D. Toth
Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003 USA
Search for more papers by this authorThu Nguyen
Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003 USA
Search for more papers by this authorCorresponding Author
Prof. Paramjit S. Arora
Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003 USA
E-mail: [email protected]
Search for more papers by this authorAbstract
Bifunctional ligands that can coax protein–protein interactions have become attractive therapeutic modalities. Herein, we describe conformationally defined helix dimers as proteomimetic molecular glues. The helix dimers can be rationally designed to engage helical protein interfaces. We previously described a synthetic Sos protein mimic, CHDSOS, as a Ras ligand that inhibits wild-type and oncogenic Ras signaling. This Sos proteomimetic consisted of a crosslinked helix dimer (CHD) that reproduced two helical domains, termed αH and αI, from Sos. The native αH helix of Sos constitutes the primary contact surface for Sos, while αI has minimal engagement. We conjectured that the αI domain of CHDSOS could be reengineered to preserve Ras binding, while engaging another protein to fully leverage the contact residues available in a proteomimetic. Herein, we incorporate a second distinct binding epitope into CHDSOS, thereby generating a bispecific proteomimetic. This secondary epitope was designed based on the p53 activation domain to engage the E3 ligase MDM2 and induce complexation with Ras. The resulting lead proteomimetic, CHDBI4, associates with both MDM2 and Ras and demonstrates reduction of cellular Ras levels. Overall, the study offers a proof of concept for the development of a bispecific proteomimetic scaffold to target multiple protein interfaces.
Conflict of Interests
PA is cofounder of Dimericon Therapeutics, which has licensed the technology described herein.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
ange202507092-sup-0001-SuppMat.pdf5.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. R. Punekar, V. Velcheti, B. G. Neel, K. K. Wong, Nat. Rev. Clin. Oncol. 2022, 19, 637–655.
- 2A. R. Moore, S. C. Rosenberg, F. McCormick, S. Malek, Nat. Rev. Drug Discovery 2020, 19, 533–552.
- 3P. Chardin, J. H. Camonis, N. W. Gale, L. van Aelst, J. Schlessinger, M. H. Wigler, D. Bar-Sagi, Science 1993, 260, 1338–1343.
- 4P. A. Boriack-Sjodin, S. M. Margarit, D. Bar-Sagi, J. Kuriyan, Nature 1998, 394, 337–343.
- 5J. Downward, Nat. Rev. Cancer 2003, 3, 11–22.
- 6S. M. Margarit, H. Sondermann, B. E. Hall, B. Nagar, A. Hoelz, M. Pirruccello, D. Bar-Sagi, J. Kuriyan, Cell 2003, 112, 685–695.
- 7S. H. Hong, D. Y. Yoo, L. Conway, K. C. Richards-Corke, C. G. Parker, P. S. Arora, Proc. Natl. Acad. Sci. USA 2021, 118, e2101027118.
- 8T. H. Tran, P. Alexander, S. Dharmaiah, C. Agamasu, D. V. Nissley, F. McCormick, D. Esposito, D. K. Simanshu, A. G. Stephen, T. E. Balius, Proc. Natl. Acad. Sci. USA 2020, 117, 3363–3364.
- 9D. Y. Yoo, A. D. Hauser, S. T. Joy, D. Bar-Sagi, P. S. Arora, ACS Chem. Biol. 2020, 15, 1604–1612.
- 10J. J. G. Winter, M. Anderson, K. Blades, C. Brassington, A. L. Breeze, C. Chresta, K. Embrey, G. Fairley, P. Faulder, M. R. V. Finlay, J. G. Kettle, T. Nowak, R. Overman, S. J. Patel, P. Perkins, L. Spadola, J. Tart, J. A. Tucker, G. Wrigley, J. Med. Chem. 2015, 58, 2265–2274.
- 11J. M. Ostrem, U. Peters, M. L. Sos, J. A. Wells, K. M. Shokat, Nature 2013, 503, 548–551.
- 12A. Patgiri, K. K. Yadav, P. S. Arora, D. Bar-Sagi, Nat. Chem. Biol. 2011, 7, 585–587.
- 13J. Boumelha, M. Molina-Arcas, J. Downward, Clin. Cancer Res. 2023, 29, 5012–5020.
- 14A. Fernandez-Medarde, E. Santos, Genes Cancer 2011, 2, 344–358.
- 15I. A. Prior, P. D. Lewis, C. Mattos, Cancer Res. 2012, 72, 2457–2467.
- 16J. Walshaw, D. N. Woolfson, J. Struct. Biol. 2003, 144, 349–361.
- 17S. L. Schreiber, Cell Chem. Biol. 2024, 31, 1050–1063.
- 18T. M. Geiger, S. C. Schäfer, J. K. Dreizler, M. Walz, F. Hausch, Current Research in Chemical Biology 2022, 2, 100018.
- 19S. L. Schreiber, Cell 2021, 184, 3–9.
- 20A. F. Labrijn, M. L. Janmaat, J. M. Reichert, P. W. H. I. Parren, Nat. Rev. Drug Discovery 2019, 18, 585–608.
- 21B. Z. Stanton, E. J. Chory, G. R. Crabtree, Science 2018, 359, eaao5902.
- 22S. U. Siriwardena, D. N. P. Munkanatta Godage, V. M. Shoba, S. Lai, M. Shi, P. Wu, S. K. Chaudhary, S. L. Schreiber, A. Choudhary, J. Am. Chem. Soc. 2020, 142, 14052–14057.
- 23X. Liu, A. Ciulli, ACS Cent. Sci. 2023, 9, 1269–1284.
- 24M. Bekes, D. R. Langley, C. M. Crews, Nat. Rev. Drug Discovery 2022, 21, 181–200.
- 25S. J. Conway, J. Med. Chem. 2020, 63, 2802–2806.
- 26C. J. Gerry, S. L. Schreiber, Nat. Chem. Biol. 2020, 16, 369–378.
- 27S.-L. Paiva, C. M. Crews, Curr. Opin. Chem. Biol. 2019, 50, 111–119.
- 28M. Konstantinidou, M. R. Arkin, Cell Chem. Biol. 2024, 31, 1064–1088.
- 29M. R. Arkin, Y. Tang, J. A. Wells, Chem. Biol. 2014, 21, 1102–1114.
- 30M. R. Arkin, J. A. Wells, Nat. Rev. Drug Discovery. 2004, 3, 301.
- 31A. E. Modell, S. L. Blosser, P. S. Arora, Trends Pharmacol. Sci. 2016, 37, 702–713.
- 32B. N. Bullock, A. L. Jochim, P. S. Arora, J. Am. Chem. Soc. 2011, 133, 14220–14223.
- 33A. M. Watkins, P. S. Arora, ACS Chem. Biol. 2014, 9, 1747–1754.
- 34A. M. Watkins, P. S. Arora, Eur. J. Med. Chem. 2015, 94, 480–488.
- 35A. M. Watkins, M. G. Wuo, P. S. Arora, J. Am. Chem. Soc. 2015, 137, 11622–11630.
- 36D. P. Bondeson, A. Mares, I. E. Smith, E. Ko, S. Campos, A. H. Miah, K. E. Mulholland, N. Routly, D. L. Buckley, J. L. Gustafson, N. Zinn, P. Grandi, S. Shimamura, G. Bergamini, M. Faelth-Savitski, M. Bantscheff, C. Cox, D. A. Gordon, R. R. Willard, J. J. Flanagan, L. N. Casillas, B. J. Votta, W. den Besten, K. Famm, L. Kruidenier, P. S. Carter, J. D. Harling, I. Churcher, C. M. Crews, Nat. Chem. Biol. 2015, 11, 611–617.
- 37G. E. Winter, D. L. Buckley, J. Paulk, J. M. Roberts, A. Souza, S. Dhe-Paganon, J. E. Bradner, Science 2015, 348, 1376–1381.
- 38K. M. Sakamoto, K. B. Kim, A. Kumagai, F. Mercurio, C. M. Crews, R. J. Deshaies, Proc. Natl. Acad. Sci. USA 2001, 98, 8554–8559.
- 39T. E. Escher, K. J. F. Satchell, Mol. Ther. 2023, 31, 1904–1919.
- 40M. H. Hofmann, D. Gerlach, S. Misale, M. Petronczki, N. Kraut, Cancer Discovery 2022, 12, 924–937.
- 41M. J. Bond, L. Chu, D. A. Nalawansha, K. Li, C. M. Crews, ACS Cent. Sci. 2020, 6, 1367–1375.
- 42M. Zeng, Y. Xiong, N. Safaee, R. P. Nowak, K. A. Donovan, C. J. Yuan, B. Nabet, T. W. Gero, F. Feru, L. Li, S. Gondi, L. J. Ombelets, C. Quan, P. A. Jänne, M. Kostic, D. A. Scott, K. D. Westover, E. S. Fischer, N. S. Gray, Cell Chem. Biol. 2020, 27, 19-31.e16.
- 43T. Nagashima, K. Inamura, Y. Nishizono, A. Suzuki, H. Tanaka, T. Yoshinari, Y. Yamanaka, European Journal of Cancer 2022, 174, S30.
- 44N. Bery, A. Miller, T. Rabbitts, Nat. Commun. 2020, 11, 3233.
- 45P. Chene, Nat. Rev. Cancer. 2003, 3, 102–109.
- 46P. H. Kussie, S. Gorina, V. Marechal, B. Elenbaas, J. Moreau, A. J. Levine, N. P. Pavletich, Science 1996, 274, 948–953.
- 47Y. S. Chang, B. Graves, V. Guerlavais, C. Tovar, K. Packman, K.-H. To, K. A. Olson, K. Kesavan, P. Gangurde, A. Mukherjee, T. Baker, K. Darlak, C. Elkin, Z. Filipovic, F. Z. Qureshi, H. Cai, P. Berry, E. Feyfant, X. E. Shi, J. Horstick, D. A. Annis, A. M. Manning, N. Fotouhi, H. Nash, L. T. Vassilev, T. K. Sawyer, Proc. Natl. Acad. Sci. USA 2013, 110, E3445–E3454.
- 48L. T. Vassilev, B. T. Vu, B. Graves, D. Carvajal, F. Podlaski, Z. Filipovic, N. Kong, U. Kammlott, C. Lukacs, C. Klein, N. Fotouhi, E. A. Liu, Science 2004, 303, 844–848.
- 49J. Hines, S. Lartigue, H. Dong, Y. Qian, C. M. Crews, Cancer Res.. 2019, 79, 251–262.
- 50J. M. Torner, Y. Yang, D. Rooklin, Y. Zhang, P. S. Arora, ACS Chem. Biol. 2021, 16, 1179–1183.
- 51L. K. Henchey, J. R. Porter, I. Ghosh, P. S. Arora, ChemBioChem 2010, 11, 2104–2107.
- 52T. Kortemme, D. E. Kim, D. Baker, Sci. Signal. 2004, 2004, pl2.
- 53A. A. Bogan, K. S. Thorn, J. Mol. Biol. 1998, 280, 1–9.
- 54T. Clackson, J. A. Wells, Science 1995, 267, 383–386.
- 55S. Baek, P. S. Kutchukian, G. L. Verdine, R. Huber, T. A. Holak, K. W. Lee, G. M. Popowicz, J. Am. Chem. Soc. 2012, 134, 103–106.
- 56M. Pazgier, M. Liu, G. Zou, W. Yuan, C. Li, J. Li, J. Monbo, D. Zella, S. G. Tarasov, W. Lu, Proc. Natl. Acad. Sci. USA 2009, 106, 4665–4670.
- 57J. K. Murray, S. H. Gellman, Biopolymers 2007, 88, 657–686.
- 58K. Sakurai, C. Schubert, D. Kahne, J. Am. Chem. Soc. 2006, 128, 11000–11001.
- 59J. A. Kritzer, J. D. Lear, M. E. Hodsdon, A. Schepartz, J. Am. Chem. Soc. 2004, 126, 9468–9469.
- 60S. T. Joy, P. S. Arora, Chem Commun (Camb) 2016, 52, 5738–5741.
- 61J. Phan, Z. Li, A. Kasprzak, B. Li, S. Sebti, W. Guida, E. Schönbrunn, J. Chen, J. Biol. Chem. 2010, 285, 2174–2183.
- 62S. H. Hong, T. Nguyen, P. Arora, Curr Protoc 2022, 2, e315.
- 63M. G. Wuo, S. H. Hong, A. Singh, P. S. Arora, J. Am. Chem. Soc. 2018, 140, 16284–16290.
- 64N. J. Greenfield, Nat. Protoc. 2006, 1, 2876–2890.
- 65J. Sadek, M. G. Wuo, D. Rooklin, A. Hauenstein, S. H. Hong, A. Gautam, H. Wu, Y. Zhang, E. Cesarman, P. S. Arora, Nat. Commun. 2020, 11, 1786.
- 66P. H. Kussie, S. Gorina, V. Marechal, B. Elenbaas, J. Moreau, A. J. Levine, N. P. Pavletich, Science 1996, 274, 948–953.
- 67M. Mirdita, K. Schütze, Y. Moriwaki, L. Heo, S. Ovchinnikov, M. Steinegger, Nat. Methods 2022, 19, 679–682.
- 68P. Bryant, G. Pozzati, A. Elofsson, Nat. Commun. 2022, 13, 1265.
- 69D. Y. Yoo, S. A. Barros, G. C. Brown, C. Rabot, D. Bar-Sagi, P. S. Arora, J. Am. Chem. Soc. 2020, 142, 14461–14471.
- 70J. S. Wadia, R. V. Stan, S. F. Dowdy, Nat. Med. 2004, 10, 310–315.
- 71J. P. Richard, K. Melikov, H. Brooks, P. Prevot, B. Lebleu, L. V. Chernomordik, J. Biol. Chem. 2005, 280, 15300–15306.
- 72C. Allolio, A. Magarkar, P. Jurkiewicz, K. Baxová, M. Javanainen, P. E. Mason, R. Šachl, M. Cebecauer, M. Hof, D. Horinek, V. Heinz, R. Rachel, C. M. Ziegler, A. Schröfel, P. Jungwirth, Proc. Natl. Acad. Sci. USA 2018, 115, 11923–11928.
- 73I. Nakase, M. Niwa, T. Takeuchi, K. Sonomura, N. Kawabata, Y. Koike, M. Takehashi, S. Tanaka, K. Ueda, J. C. Simpson, A. T. Jones, Y. Sugiura, S. Futaki, Mol. Ther. 2004, 10, 1011–1022.
- 74M. Karlsson, C. Zhang, L. Méar, W. Zhong, A. Digre, B. Katona, E. Sjöstedt, L. Butler, J. Odeberg, P. Dusart, F. Edfors, P. Oksvold, K. von Feilitzen, M. Zwahlen, M. Arif, O. Altay, X. Li, M. Ozcan, A. Mardinoglu, L. Fagerberg, J. Mulder, Y. Luo, F. Ponten, M. Uhlén, C. Lindskog, Sci. Adv. 2021, 7, eabh2169.
- 75F. Hoppe-Seyler, K. Butz, J. Virol. 1993, 67, 3111–3117.
- 76S. Nag, J. Qin, K. S. Srivenugopal, M. Wang, R. Zhang, J Biomed Res 2013, 27, 254–271.
- 77L. G. Milroy, T. N. Grossmann, S. Hennig, L. Brunsveld, C. Ottmann, Chem. Rev. 2014, 114, 4695–4748.
- 78N. Sawyer, A. M. Watkins, P. S. Arora, Acc. Chem. Res. 2017, 50, 1313–1322.
- 79M. G. Wuo, P. S. Arora, Curr. Opin. Chem. Biol. 2018, 44, 16–22.
- 80W. S. Horne, T. N. Grossmann, Nat. Chem. 2020, 12, 331–337.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.