Selective Electrocatalytic Hydrodimerization of Acetylene to 1,3-Butadiene Over Neighboring Cu Dual Sites
Jun Bu
State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072 P.R. China
Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology and School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129 P.R. China
Search for more papers by this authorXinyue Niu
State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072 P.R. China
Search for more papers by this authorJinjin Li
State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072 P.R. China
Search for more papers by this authorRui Bai
State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Menglei Yuan
State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072 P.R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Prof. Jian Zhang
State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072 P.R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorJun Bu
State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072 P.R. China
Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology and School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129 P.R. China
Search for more papers by this authorXinyue Niu
State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072 P.R. China
Search for more papers by this authorJinjin Li
State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072 P.R. China
Search for more papers by this authorRui Bai
State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Menglei Yuan
State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072 P.R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Prof. Jian Zhang
State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072 P.R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorAbstract
Selective electrocatalytic hydrodimerization of acetylene to 1,3-butadiene is a promising alternative to the energy-intensive naphtha steam cracking route, but remains a grand challenge due to competitive acetylene semihydrogenation and oligomerization. Herein, we profoundly investigate the underpinning structure–performance correlations between diverse nuclear number of Cu sites and acetylene hydrodimerization over benchmark Cu-MOFs electrocatalysts. The operando electrochemical Raman and Fourier transform infrared spectroscopies and theoretical simulations together reveal that single Cu site and double Cu sites are favorable for acetylene semihydrogenation and hydrodimerization, respectively. The as-designed neighboring Cu dual sites in trinuclear Cu3-MOF enable the adsorption of acetylene, subsequent C–C coupling of *C2H2 and *C2H3 intermediates into 1,3-butadiene as well as the desorption of 1,3-butadiene. As a result, the trinuclear Cu3-MOF affords a 1,3-butadiene selectivity of 91% and a high 1,3-butadiene production rate of 64 mmol g−1 h−1, which is about 2-fold and 20-fold higher than Cu2-MOF and Cu1-MOF. This work not only provides profound insights into the electrocatalytic mechanism of acetylene hydrodimerization but also guides the rational design of high-activity electrocatalysts.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
ange202505843-sup-0001-SuppMat.docx1.8 MB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1P. C. A. Bruijnincx, B. M. Weckhuysen, Angew. Chem. Int. Ed. 2013, 52, 11980–11987.
- 2Z. J. Schiffer, K. Manthiram, Joule. 2017, 1, 10–14.
- 3S.-H. Chung, T. Li, T. Shoinkhorova, S. Komaty, A. Ramirez, I. Mukhambetov, E. Abou-Hamad, G. Shterk, S. Telalovic, A. Dikhtiarenko, B. Sirks, P. Lavrik, X. Tang, B. M. Weckhuysen, P. C. A. Bruijnincx, J. Gascon, J. Ruiz-Martínez, Nat. Catal. 2023, 6, 363–376.
- 4Y. Mori, S. Noda, T. Shirai, A. Kondo, Nat. Commun. 2021, 12, 2195.
- 5C. Angelici, B. M. Weckhuysen, P. C. Bruijnincx, ChemSusChem 2013, 6, 1595–1614.
- 6E. V. Makshina, M. Dusselier, W. Janssens, J. Degreve, P. A. Jacobs, B. F. Sels, Chem. Soc. Rev. 2014, 43, 7917–7953.
- 7W. C. White, Chem-Biol. Interact. 2007, 166, 10–14.
- 8I. Bin Samsudin, H. Zhang, S. Jaenicke, G. K. Chuah, Chem. Asian J. 2020, 15, 4199–4214.
- 9G. Pomalaza, P. Arango Ponton, M. Capron, F. Dumeignil, Catal. Sci. Technol. 2020, 10, 4860–4911.
- 10S. Shylesh, A. A. Gokhale, C. D. Scown, D. Kim, C. R. Ho, A. T. Bell, ChemSusChem 2016, 9, 1462–1472.
- 11I.-T. Trotuş, T. Zimmermann, F. Schüth, Chem. Rev. 2014, 114, 1761–1782.
- 12L. Zhang, R. Bai, J. Lin, J. Bu, Z. Liu, S. An, Z. Wei, J. Zhang, Nat. Chem. 2024, 16, 893–900.
- 13R. Shi, Z. Wang, Y. Zhao, G. I. N. Waterhouse, Z. Li, B. Zhang, Z. Sun, C. Xia, H. Wang, T. Zhang, Nat. Catal. 2021, 4, 565–574.
- 14S. Wang, K. Uwakwe, L. Yu, J. Ye, Y. Zhu, J. Hu, R. Chen, Z. Zhang, Z. Zhou, J. Li, Z. Xie, D. Deng, Nat. Commun. 2021, 12, 7072.
- 15B. Zhao, F. Chen, M. Wang, C. Cheng, Y. Wu, C. Liu, Y. Yu, B. Zhang, Nat. Sustain. 2023, 6, 827–837.
- 16J. Bu, Z. Liu, W. Ma, L. Zhang, T. Wang, H. Zhang, Q. Zhang, X. Feng, J. Zhang, Nat. Catal. 2021, 4, 557–564.
- 17X. Jiang, L. Tang, L. Dong, X. Sheng, W. Zhang, Z. Liu, J. Shen, H. Jiang, C. Li, Angew. Chem. Int. Ed. 2023, 62, e202307848.
- 18W. Xue, X. Liu, C. Liu, X. Zhang, J. Li, Z. Yang, P. Cui, H.-J. Peng, Q. Jiang, H. Li, P. Xu, T. Zheng, C. Xia, J. Zeng, Nat. Commun. 2023, 14, 2137.
- 19L. Zhang, Z. Chen, Z. Liu, J. Bu, W. Ma, C. Yan, R. Bai, J. Lin, Q. Zhang, J. Liu, T. Wang, J. Zhang, Nat. Commun. 2021, 12, 6574.
- 20F. Chen, L. Li, C. Cheng, Y. Yu, B.-H. Zhao, B. Zhang, Nat. Commun. 2024, 15, 5914.
- 21Z. Wu, J. Zhang, Q. Guan, X. Liu, H. Xiong, S. Chen, W. Hong, D. Li, Y. Lei, S. Deng, J. Wang, G. Wang, Adv. Mater. 2024, 36, 2408681.
- 22L. Huang, D. Bao, Y. Jiang, Y. Zheng, S. Z. Qiao, Angew. Chem. Int. Ed. 2024, 63, e202405943.
- 23J. Li, Y. Guo, S. Chang, J. Lin, Y. Wang, Z. Liu, Y. Wu, J. Zhang, Small 2023, 19, e2205845.
- 24D. H. Nam, O. S. Bushuyev, J. Li, P. De Luna, A. Seifitokaldani, C.-T. Dinh, F. P. García de Arquer, Y. Wang, Z. Liang, A. H. Proppe, C. S. Tan, P. Todorović, O. Shekhah, C. M. Gabardo, J. W. Jo, J. Choi, M.-J. Choi, S. W. Baek, J. Kim, D. Sinton, S. O. Kelley, M. Eddaoudi, E. H. Sargent, J. Am. Chem. Soc. 2018, 140, 11378–11386.
- 25D. Huang, H. Zhu, Z. Zhao, J. Huang, P. Liao, X. Chen, ACS Catal. 2022, 12, 8444–8450.
- 26W. Ouellette, M. H. Yu, C. J. O'Connor, D. Hagrman, J. Zubieta, Angew. Chem. Int. Ed. 2006, 45, 3497–3500.
- 27A. Nazir, H. T. T. Le, A. Kasbe, C. Park, Chem. Eng. J. 2021, 405, 126963.
- 28M. G. Campbell, D. Sheberla, S. F. Liu, T. M. Swager, M. Dinca, Angew. Chem. Int. Ed. 2015, 54, 4349–4352.
- 29Y. Lian, W. Yang, C. Zhang, H. Sun, Z. Deng, W. Xu, L. Song, Z. Ouyang, Z. Wang, J. Guo, Y. Peng, Angew. Chem. Int. Ed. 2020, 59, 286–294.
- 30X. F. Qiu, H. L. Zhu, J. R. Huang, P. Q. Liao, X. M. Chen, J. Am. Chem. Soc. 2021, 143, 7242–7246.
- 31M. Hmadeh, Z. Lu, Z. Liu, F. Gándara, H. Furukawa, S. Wan, V. Augustyn, R. Chang, L. Liao, F. Zhou, E. Perre, V. Ozolins, K. Suenaga, X. Duan, B. Dunn, Y. Yamamto, O. Terasaki, O. M. Yaghi, Chem. Mater. 2012, 24, 3511–3513.
- 32P. St Petkov, G. N. Vayssilov, J. Liu, O. Shekhah, Y. Wang, C. Woll, T. Heine, Chem. Phys. Chem. 2012, 13, 2025–2029.
- 33M. C. Biesinger, L. W. M. Lau, A. R. Gerson, R. S. C Smart, Appl. Surf. Sci. 2010, 257, 887–898.
- 34C. Raoul, C. Yibing, S. George, J. Phys. D:Appl. Phys. 2004, 37, 13.
- 35A. Aykanat, Z. Meng, R. M. Stolz, C. T. Morrell, K. A. Mirica, Angew. Chem. Int. Ed. 2022, 61, e202113665.
- 36L. L. Ling, X. Guan, X. Liu, X. M. Lei, Z. Lin, H. L. Jiang, Natl. Sci. Rev. 2024, 11, nwae114.
- 37C. Hu, Z. Jiang, Q. Wu, S. Cao, Q. Li, C. Chen, L. Yuan, Y. Wang, W. Yang, J. Yang, J. Peng, W. Shi, M. Zhai, M. Mostafavi, J. Ma, Nat. Commun. 2023, 14, 4767.
- 38Z. Zhao, H. Zhu, J. Huang, P. Liao, X. Chen, ACS Catal. 2022, 12, 7986–7993.
- 39F. Shao, J. Cheng, X. Song, Z. Wei, X. Zhong, Z. Yao, H. Wang, X. Sun, A. Li, J. Wang, Dalton Trans. 2023, 52, 461–468.
- 40S. Zhu, T. Li, W.-B. Cai, M. Shao, ACS Energy Lett. 2019, 4, 682–689.
- 41Y. Kim, S. Park, S. Shin, W. Choi, B. K. Min, H. Kim, W. Kim, Y. J. Hwang, Energy Environ. Sci. 2020, 13, 4301–4311.
- 42G. Liu, B. Ren, D. Wu, J. Lin, R. Gu, Z. Tian, J. Electroanal. Chem. 2006, 594, 73–79.
- 43Z. Wei, W. Wang, T. Shao, S. Yang, C. Liu, D. Si, R. Cao, M. Cao, Angew. Chem. Int. Ed. 2024, 64, e202417066.
- 44F. Wan, W. Kong, Q. Liu, P. Wang, M. Wang, Q. Li, X. Yao, W. Chen, Anal. Chem. 2023, 95, 8596–8604.
- 45R. Matsuda, R. Kitaura, S. Kitagawa, Y. Kubota, R. V. Belosludov, T. C. Kobayashi, H. Sakamoto, T. Chiba, M. Takata, Y. Kawazoe, Y. Mita, Nature 2005, 436, 238–241.
- 46M. L. Patterson, M. J. Weaver, J. Phys. Chem. 1985, 89, 5046–5051.
- 47P. Ren, Z. Gao, T. Montini, Z. Zhao, N. Ta, Y. Huang, N. Luo, E. Fonda, P. Fornasiero, F. Wang, Joule. 2023, 7, 333–349.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.