Altering the Symmetry of Fe–N–C by Axial Cl-Mediation for High-Performance Zinc–Air Batteries
Mengni Liu
Department of Physics, College of Science, Shihezi University, Xinjiang, 832003 P.R. China
School of Integrated Circuits, State Key Laboratory of New Textile Materials and Advanced Processing, Huazhong University of Science and Technology, Wuhan, 430074 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorYuxiao Liu
School of Integrated Circuits, State Key Laboratory of New Textile Materials and Advanced Processing, Huazhong University of Science and Technology, Wuhan, 430074 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorXia Zhang
School of Integrated Circuits, State Key Laboratory of New Textile Materials and Advanced Processing, Huazhong University of Science and Technology, Wuhan, 430074 P.R. China
Search for more papers by this authorLinfeng Li
School of Integrated Circuits, State Key Laboratory of New Textile Materials and Advanced Processing, Huazhong University of Science and Technology, Wuhan, 430074 P.R. China
Search for more papers by this authorCorresponding Author
Xinying Xue
Department of Physics, College of Science, Shihezi University, Xinjiang, 832003 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorMuhammad Humayun
Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586 Saudi Arabia
Search for more papers by this authorHaowei Yang
School of Materials Science and Engineering, Central South University, Changsha, 410083 P.R. China
Search for more papers by this authorLibo Sun
Department of Chemistry, City University of Hong Kong, Hong Kong, 999077 P. R. China
Search for more papers by this authorMohamed Bououdina
Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586 Saudi Arabia
Search for more papers by this authorJianrong Zeng
Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204 P.R. China
Search for more papers by this authorDeli Wang
School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 P.R. China
Search for more papers by this authorRony Snyders
Chimie des Interactions Plasma Surfaces (ChIPS), University of Mons, Mons, 7000 Belgium
Materia Nova Research Center, Mons, B-7000 Belgium
Search for more papers by this authorDingsheng Wang
Department of Chemistry, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorCorresponding Author
Xin Wang
Department of Chemistry, City University of Hong Kong, Hong Kong, 999077 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Chundong Wang
School of Integrated Circuits, State Key Laboratory of New Textile Materials and Advanced Processing, Huazhong University of Science and Technology, Wuhan, 430074 P.R. China
Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586 Saudi Arabia
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorMengni Liu
Department of Physics, College of Science, Shihezi University, Xinjiang, 832003 P.R. China
School of Integrated Circuits, State Key Laboratory of New Textile Materials and Advanced Processing, Huazhong University of Science and Technology, Wuhan, 430074 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorYuxiao Liu
School of Integrated Circuits, State Key Laboratory of New Textile Materials and Advanced Processing, Huazhong University of Science and Technology, Wuhan, 430074 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorXia Zhang
School of Integrated Circuits, State Key Laboratory of New Textile Materials and Advanced Processing, Huazhong University of Science and Technology, Wuhan, 430074 P.R. China
Search for more papers by this authorLinfeng Li
School of Integrated Circuits, State Key Laboratory of New Textile Materials and Advanced Processing, Huazhong University of Science and Technology, Wuhan, 430074 P.R. China
Search for more papers by this authorCorresponding Author
Xinying Xue
Department of Physics, College of Science, Shihezi University, Xinjiang, 832003 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorMuhammad Humayun
Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586 Saudi Arabia
Search for more papers by this authorHaowei Yang
School of Materials Science and Engineering, Central South University, Changsha, 410083 P.R. China
Search for more papers by this authorLibo Sun
Department of Chemistry, City University of Hong Kong, Hong Kong, 999077 P. R. China
Search for more papers by this authorMohamed Bououdina
Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586 Saudi Arabia
Search for more papers by this authorJianrong Zeng
Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204 P.R. China
Search for more papers by this authorDeli Wang
School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 P.R. China
Search for more papers by this authorRony Snyders
Chimie des Interactions Plasma Surfaces (ChIPS), University of Mons, Mons, 7000 Belgium
Materia Nova Research Center, Mons, B-7000 Belgium
Search for more papers by this authorDingsheng Wang
Department of Chemistry, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorCorresponding Author
Xin Wang
Department of Chemistry, City University of Hong Kong, Hong Kong, 999077 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Chundong Wang
School of Integrated Circuits, State Key Laboratory of New Textile Materials and Advanced Processing, Huazhong University of Science and Technology, Wuhan, 430074 P.R. China
Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586 Saudi Arabia
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Fe–N–C catalyst is acknowledged as a promising alternative for the state-of-the-art Pt/C in oxygen reduction reaction (ORR) toward cutting-edge electrochemical energy conversion/storage applications. Herein, a “Cl-mediation” strategy is proposed on Fe–N–C for modulating the catalyst's electronic structure toward achieving remarkable ORR activity. By coordinating axial Cl atoms to iron phthalocyanine (FePc) molecules on carbon nanotubes (CNTs) matrix, a Cl-modulated Fe–N–C (FePc-Cl-CNTs) catalyst is synthesized. The as-prepared FePc-Cl-CNTs exhibit an improved ORR activity with a half-wave potential of 0.91 V versus RHE in alkaline solution, significantly outperforming the parent FePc-CNTs (0.88 V versus RHE). The advanced nature of the as-prepared FePc-Cl-CNTs is evidenced by a configured high-performance rechargeable Zn–air battery, which operates stably for over 150 h. The experiments and density functional theory calculations unveil that axial Cl atoms induce the transformation of FePc from its original D4h to C4v symmetry, effectively altering the electrons distribution around the Fe-center, by which it optimizes *OH desorption and subsequently boosts the reaction kinetics. This work paves ways for resolving the dilemma of Fe–N–C catalysts’ exploration via engineering Fe–N–C configuration.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
ange202504923-sup-0001-SuppMat.docx9.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Wang, J. Wu, S. Tang, J. Yang, C. Ye, J. Chen, Y. Lei, D. Wang, Angew. Chem. Int. Ed. 2023, 62, e202219191.
- 2K. Wang, Z. Lu, J. Lei, Z. Liu, Y. Li, Y. Cao, ACS Nano 2022, 16, 11944–11956.
- 3D. Du, S. Zhao, Z. Zhu, F. Li, J. Chen, Angew. Chem. Int. Ed. 2020, 59, 18140–18144.
- 4R. Zhuang, P. Wang, L. Wang, Q. Lai, J. Qiu, Y. Chen, X. Zhang, L. Sun, Y. Hua, Angew. Chem. Int. Ed. 2024, e202413660.
- 5Y. Chen, S. Ji, S. Zhao, W. Chen, J. Dong, W. C. Cheong, R. Shen, X. Wen, L. Zheng, A. I. Rykov, S. Cai, H. Tang, Z. Zhuang, C. Chen, Q. Peng, D. Wang, Y. Li, Nat. Commun. 2018, 9, 5422.
- 6M. K. Debe, Nature 2012, 486, 43–51.
- 7Y. Zhou, Z. Xie, J. Jiang, J. Wang, X. Song, Q. He, W. Ding, Z. Wei, Nat. Catal. 2020, 3, 454–462.
- 8S. Ponnada, M. S. Kiai, D. B. Gorle, A. Nowduri, R. K. Sharma, Energy Fuels 2021, 35, 15265–15284.
- 9L. Wang, J. Wu, S. Wang, H. Liu, Y. Wang, D. Wang, Nano Res. 2024, 17, 3261–3301.
- 10A. Han, W. Sun, X. Wan, D. Cai, X. Wang, F. Li, J. Shui, D. Wang, Angew. Chem. Int. Ed. 2023, 62, e202303185.
- 11Z. Miao, S. Li, C. Priest, T. Wang, G. Wu, Q. Li, Adv. Mater. 2022, 34, e2200595.
- 12L. Jiao, J. Li, L. L. Richard, Q. Sun, T. Stracensky, E. Liu, M. T. Sougrati, Z. Zhao, F. Yang, S. Zhong, H. Xu, S. Mukerjee, Y. Huang, D. A. Cullen, J. H. Park, M. Ferrandon, D. J. Myers, F. Jaouen, Q. Jia, Nat. Mater. 2021, 20, 1385–1391.
- 13L. J. Liu, Z. Y. Wang, Z. Y. Wang, R. Wang, S. Q. Zang, T. C. W. Mak, Angew. Chem. Int. Ed. 2022, 61, e202205626.
- 14L. Lu, S. Zou, B. Fang, ACS Catal. 2021, 11, 6020–6058.
- 15H. Zhang, H. C. Chen, S. Feizpoor, L. Li, X. Zhang, X. Xu, Z. Zhuang, Z. Li, W. Hu, R. Snyders, D. Wang, C. Wang, Adv. Mater. 2024, 36, e2400523.
- 16H. Sun, C. W. Tung, Y. Qiu, W. Zhang, Q. Wang, Z. Li, J. Tang, H. C. Chen, C. Wang, H. M. Chen, J. Am. Chem. Soc. 2022, 144, 1174–1186.
- 17J. Qiao, C. Lu, L. Kong, J. Zhang, Q. Lin, H. Huang, C. Li, W. He, M. Zhou, Z. Sun, Adv. Funct. Mater. 2024, 34, 2409794.
- 18Z. D. Wang, Y. Han, Y. Y. Wang, S. Q. Zang, P. Peng, Angew. Chem. Int. Ed. 2024, 64, e202416973.
- 19B. Huang, L. Li, X. Tang, W. Zhai, Y. Hong, T. Hu, K. Yuan, Y. Chen, Energy Environ. Sci. 2021, 14, 2789–2808.
- 20P. Peng, L. Shi, F. Huo, C. Mi, X. Wu, S. Zhang, Z. Xiang, Sci Adv. 2019, 5, eaaw2322.
- 21J. Chen, J. Huang, R. Wang, W. Feng, H. Wang, T. Luo, Y. Hu, C. Yuan, L. Feng, L. Cao, K. Kajiyoshi, C. He, Y. Liu, Z. Li, Y. Feng, Chem. Eng. J. 2022, 441, 136078.
- 22L. Hu, C. Dai, L. Chen, Y. Zhu, Y. Hao, Q. Zhang, L. Gu, X. Feng, S. Yuan, L. Wang, B. Wang, Angew. Chem. Int. Ed. 2021, 60, 27324–27329.
- 23R. Cao, R. Thapa, H. Kim, X. Xu, M. Gyu Kim, Q. Li, N. Park, M. Liu, J. Cho, Nat. Commun. 2013, 4, 2076.
- 24R. Baker, D. P. Wilkinson, J. Zhang, Electrochim. Acta 2008, 53, 6906–6919.
- 25X. Wang, B. Wang, J. Zhong, F. Zhao, N. Han, W. Huang, M. Zeng, J. Fan, Y. Li, Nano Res. 2016, 9, 1497–1506.
- 26Z.y. Mei, S. Cai, G. Zhao, X. Zou, Y. Fu, J. Jiang, Q. An, M. Li, T. Liu, H. Guo, Chem. Eng. J. 2022, 430, 132691.
- 27J. Wang, X. Huang, S. Xi, H. Xu, X. Wang, Angew. Chem. Int. Ed. 2020, 59, 19162–19167.
- 28L. Sun, X. Jin, T. Su, A. C. Fisher, X. Wang, Adv. Mater. 2024, 36, e2306336.
- 29L. Sun, Z. Huang, V. Reddu, T. Su, A. C. Fisher, X. Wang, Angew. Chem. Int. Ed. 2020, 59, 17104–17109.
- 30J. Su, C. B. Musgrave, Y. Song, L. Huang, Y. Liu, G. Li, Y. Xin, P. Xiong, M. M.J. Li, H. Wu, M. Zhu, H. M. Chen, J. Zhang, H. Shen, B. Z. Tang, M. Robert, W. A. Goddard, R. Ye, Nat. Catal. 2023, 6, 818–828.
- 31Y. Dai, B. Liu, Z. Zhang, P. Guo, C. Liu, Y. Zhang, L. Zhao, Z. Wang, Adv. Mater. 2023, 35, e2210757
- 32X. Tang, Y. Wei, W. Zhai, Y. Wu, T. Hu, K. Yuan, Y. Chen, Adv. Mater. 2023, 35, e2208942.
- 33C. Liu, Z. Yu, F. She, J. Chen, F. Liu, J. Qu, J. M. Cairney, C. Wu, K. Liu, W. Yang, H. Zheng, Y. Chen, H. Li, L. Wei, Energy Environ. Sci. 2023, 16, 446–459.
- 34S. Xu, Y. Ding, J. Du, Y. Zhu, G. Liu, Z. Wen, X. Liu, Y. Shi, H. Gao, L. Sun, F. Li, ACS Catal. 2022, 12, 5502–5509.
- 35S. Zhu, L. Ding, X. Zhang, K. Wang, X. Wang, F. Yang, G. Han, Angew. Chem. Int. Ed. 2023, 62, e202309545.
- 36F. Kong, X. Cui, Y. Huang, H. Yao, Y. Chen, H. Tian, G. Meng, C. Chen, Z. Chang, J. Shi, Angew. Chem. Int. Ed. 2022, 61, e202116290.
- 37J. Yang, W. H. Li, H. T. Tang, Y. M. Pan, D. Wang, Y. Li, Nature 2023, 617, 519–523.
- 38X. Feng, G. Chen, Z. Cui, R. Qin, W. Jiao, Z. Huang, Z. Shang, C. Ma, X. Zheng, Y. Han, W. Huang, Angew. Chem. Int. Ed. 2024, 63, e202316314.
- 39Q. Wang, Y. Yang, F. Sun, G. Chen, J. Wang, L. Peng, W. T. Chen, L. Shang, J. Zhao, D. Sun-Waterhouse, T. Zhang, G. I. N. Waterhouse, Adv. Energy Mater. 2021, 11, 2100219.
- 40Y. Cao, Z. Liu, Y. Tang, C. Huang, Z. Wang, F. Liu, Y. Wen, B. Shan, R. Chen, Carbon 2021, 180, 1–9.
- 41C. Zhang, W. Shen, K. Guo, M. Xiong, J. Zhang, X. Lu, J. Am. Chem. Soc. 2023, 145, 11589–11598.
- 42S. Liu, Y. Zhang, B. Ge, F. Zheng, N. Zhang, M. Zuo, Y. Yang, Q. Chen, Adv. Mater. 2021, 33, e2103133.
- 43J. Zhu, Y. Huang, W. Mei, C. Zhao, C. Zhang, J. Zhang, I. S. Amiinu, S. Mu, Angew. Chem. Int. Ed. 2019, 58, 3859–3864.
- 44J. Gao, Y. Wang, H. Wu, X. Liu, L. Wang, Q. Yu, A. Li, H. Wang, C. Song, Z. Gao, M. Peng, M. Zhang, N. Ma, J. Wang, W. Zhou, G. Wang, Z. Yin, D. Ma, Angew. Chem. Int. Ed. 2019, 58, 15089–15097.
- 45M. F. Sanad, H. M. Franklin, B. A. Ali, A. R. Puente Santiago, A. N. Nair, V. S. N. Chava, O. Fernandez-Delgado, N. K. Allam, S. Stevenson, S. T. Sreenivasan, L. Echegoyen, Angew. Chem. Int. Ed. 2022, 61, e202116727.
- 46G. Ye, S. Liu, K. Zhao, Z. He, Angew. Chem. Int. Ed. 2023, 62, e202303409.
- 47X. Tan, J. Zhang, F. Cao, Y. Liu, H. Yang, Q. Zhou, X. Li, R. Wang, Z. Li, H. Hu, Q. Zhao, M. Wu, Adv. Sci. 2024, 11, e2306599.
- 48Z.-y. Mei, S. Cai, G. Zhao, Q. Jing, X. Sheng, J. Jiang, H. Guo, Energy Storage Mater. 2022, 50, 12–20.
- 49B. Tang, Q. Ji, X. Zhang, R. Shi, J. Ma, Z. Zhuang, M. Sun, H. Wang, R. Liu, H. Liu, C. Wang, Z. Guo, L. Lu, P. Jiang, D. Wang, W. Yan, Angew. Chem. Int. Ed. 2025, 137, e202424135.
- 50W. Xu, R. Zeng, M. Rebarchik, A. Posada-Borbon, H. Li, C. J. Pollock, M. Mavrikakis, H. D. Abruna, J. Am. Chem. Soc. 2024, 146, 2593–2603.
- 51H. Peng, W. Wang, J. Gao, F. Jiang, B. Li, Y. Wang, Y. Wu, Y. Wang, J. Li, J. Peng, W. Hu, Z. Wen, D. Wang, E. Zhang, M. Zhai, Adv. Sci. 2024, 12, e2411928.
- 52K. Chen, K. Liu, P. An, H. Li, Y. Lin, J. Hu, C. Jia, J. Fu, H. Li, H. Liu, Z. Lin, W. Li, J. Li, Y. R. Lu, T. S. Chan, N. Zhang, M. Liu, Nat. Commun. 2020, 11, 4173.
- 53Q. Jia, N. Ramaswamy, H. Hafiz, U. Tylus, K. Strickland, G. Wu, B. Barbiellini, A. Bansil, E. F. Holby, P. Zelenay, S. Mukerjee, ACS Nano 2015, 9, 12496–12505.
- 54A. V. Soldatov, G. Smolentsev, A. Kravtsova, G. Yalovega, M. C. Feiters, G. A. Metselaar, Y. Joly, Radiat. Phys. Chem. 2006, 75, 1866–1868.
- 55S. Grenier, Y. Joly, J. Phys. Conf. Ser. 2014, 519, 012001.
- 56G. Chen, R. Lu, C. Li, J. Yu, X. Li, L. Ni, Q. Zhang, G. Zhu, S. Liu, J. Zhang, U. I. Kramm, Y. Zhao, G. Wu, J. Xie, X. Feng, Adv. Mater. 2023, 35, e2300907.
- 57Q. Ma, H. Jin, J. Zhu, Z. Li, H. Xu, B. Liu, Z. Zhang, J. Ma, S. Mu, Adv. Sci. 2021, 8, e2102209.
- 58H. Li, S. Di, P. Niu, S. Wang, J. Wang, L. Li, Energy Environ. Sci. 2022, 15, 1601–1610.
- 59Y. Ma, J. Li, X. Liao, W. Luo, W. Huang, J. Meng, Q. Chen, S. Xi, R. Yu, Y. Zhao, L. Zhou, L. Mai, Adv. Funct. Mater. 2020, 30, 2005000.
- 60X. Zhang, Z. Wu, X. Zhang, L. Li, Y. Li, H. Xu, X. Li, X. Yu, Z. Zhang, Y. Liang, H. Wang, Nat. Commun. 2017, 8, 14675.
- 61Y. Li, R. Hu, Z. Chen, X. Wan, J.-X. Shang, F.-H. Wang, J. Shui, Nano Res. 2021, 14, 611–619.
- 62Y. F. Xia, P. Guo, J. Z. Li, L. Zhao, X. L. Sui, Y. Wang, Z. B. Wang, iScience 2021, 24, 103024.
- 63G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15–50.
- 64G. Kresse, J. Hafner, Phys. Rev. B Condens. Matter 1993, 47, 558–561.
- 65P. E. Blochl, Phys. Rev. B Condens. Matter 1994, 50, 17953–17979.
- 66B. Hammer, L. B. Hansen, J. K. Nørskov, Phys. Rev. B 1999, 59, 7413–7421.
- 67J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B Condens. Matter 1992, 46, 6671–6687.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.