Molecular-Level Interface Engineering and Additive-Induced Crystallinity Tuning for High-Performance Thermally Conductive Polymer Composites
This article relates to:
-
Outside Back Cover: Molecular-Level Interface Engineering and Additive-Induced Crystallinity Tuning for High-Performance Thermally Conductive Polymer Composites (Angew. Chem. 30/2025)
- Minwoo Rim,
- Huan Huu Pham,
- Hyerim Lee,
- Jaeseok Hyeong,
- Youngjae Wi,
- Jahyeon Koo,
- Duy Thanh Tran,
- Seok-In Na,
- Dong-Gue Kang,
- Kwang-Un Jeong,
- Volume 137Issue 30Angewandte Chemie
- First Published online: June 26, 2025
Minwoo Rim
Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896 Republic of Korea
Search for more papers by this authorHuan Huu Pham
Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896 Republic of Korea
Search for more papers by this authorHyerim Lee
Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896 Republic of Korea
Search for more papers by this authorJaeseok Hyeong
Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896 Republic of Korea
Search for more papers by this authorYoungjae Wi
Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896 Republic of Korea
Search for more papers by this authorDr. Jahyeon Koo
Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896 Republic of Korea
Search for more papers by this authorProf. Duy Thanh Tran
Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896 Republic of Korea
Search for more papers by this authorProf. Seok-In Na
Department of Flexible and Printable Electronics and LANL-JBNU Engineering Institute-Korea, Jeonbuk National University, Jeonju, 54896 Republic of Korea
Search for more papers by this authorCorresponding Author
Dr. Dong-Gue Kang
Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896 Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Kwang-Un Jeong
Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896 Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorMinwoo Rim
Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896 Republic of Korea
Search for more papers by this authorHuan Huu Pham
Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896 Republic of Korea
Search for more papers by this authorHyerim Lee
Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896 Republic of Korea
Search for more papers by this authorJaeseok Hyeong
Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896 Republic of Korea
Search for more papers by this authorYoungjae Wi
Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896 Republic of Korea
Search for more papers by this authorDr. Jahyeon Koo
Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896 Republic of Korea
Search for more papers by this authorProf. Duy Thanh Tran
Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896 Republic of Korea
Search for more papers by this authorProf. Seok-In Na
Department of Flexible and Printable Electronics and LANL-JBNU Engineering Institute-Korea, Jeonbuk National University, Jeonju, 54896 Republic of Korea
Search for more papers by this authorCorresponding Author
Dr. Dong-Gue Kang
Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896 Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Kwang-Un Jeong
Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896 Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
To boost up the properties of thermally conductive polymer composites, it is essential to conduct comprehensive research focused on interface engineering between the polymer matrix and fillers. Hexagonal boron nitride (BN) or expanded graphite (EG) are commonly utilized as nanofillers to improve the thermal conductivity of polymer composites. However, the interfacial interactions between the polymer matrix and nanofillers are generally weak, making effective thermal conductivity challenging. To address this issue, we have designed and synthesized an electron-rich and aromatic tetrathiafulvalene-based reactive mesogen (TRM), which not only possesses high thermal conductivity but also exhibits excellent interfacial affinity with BN and EG at the molecular level. Systematic experiments, including photophysical, thermodynamic, structural, and computational analyses, reveal that the thermal conductivity of TRM-based polymer composites is substantially enhanced due to effective interfacial interactions between TRM and fillers. The TRM composites experimentally show excellent thermal conductivity based on enhanced interfacial phonon transfer, and these results are supported by theoretical interpretations. These findings underscore the critical importance of interface engineering between the polymer matrix and fillers at the molecular level in maximizing the material properties of polymer composites.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
ange202504825-supp-0001-SuppMat.docx4.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D.-G. Kang, N. Kim, M. Park, C. Nah, J. S. Kim, C.-R. Lee, Y. Kim, C. B. Kim, M. Goh, K.-U. Jeong, ACS Appl. Mater. Interfaces 2018, 10, 3155–3159.
- 2Y. Zhang, W. Gao, Y. Li, D. Zhao, H. Yin, RSC Adv. 2019, 9, 7388–7399.
- 3S.-Z. Li, Y.-C. Zhou, L.-N. Wang, S.-P. Wang, L. Bai, C.-P. Feng, R.-Y. Bao, J. Yang, M.-B. Yang, W. Yang, J. Mater. Chem. A 2023, 11, 18832–18842.
- 4D. Lee, S. Lee, S. Byun, K.-W. Paik, S. H. Song, Compos. A: Appl. Sci. Manuf. 2018, 107, 217–223.
- 5S. H. Song, K. H. Park, B. H. Kim, Y. W. Choi, G. H. Jun, D. J. Lee, B. S. Kong, K. W. Paik, S. Jeon, Adv. Mater. 2013, 25, 732–737.
- 6E.-C. Cho, C.-W. Chang-Jian, Y.-S. Hsiao, K.-C. Lee, J.-H. Huang, Compos. A: Appl. Sci. Manuf. 2016, 90, 678–686.
- 7G.-H. Kim, D. Lee, A. Shanker, L. Shao, M. S. Kwon, D. Gidley, J. Kim, K. P. Pipe, Nat. Mater. 2015, 14, 295–300.
- 8H. Im, J. Kim, Carbon 2012, 50, 5429–5440.
- 9M. Rim, D.-G. Kang, H. Ko, Y. Wi, W. Kim, S. Kim, J. Hyeong, N. Kim, K.-U. Jeong, Chem. Mater. 2022, 34, 718–727.
- 10X. Huang, C. Zhi, P. Jiang, D. Golberg, Y. Bando, T. Tanaka, Adv. Funct. Mater. 2013, 23, 1824–1831.
- 11J. Chen, X. Huang, B. Sun, Y. Wang, Y. Zhu, P. Jiang, ACS Appl. Mater. Interfaces 2017, 9, 30909–30917.
- 12S. Roy, X. Zhang, A. B. Puthirath, A. Meiyazhagan, S. Bhattacharyya, M. M. Rahman, G. Babu, S. Susarla, S. K. Saju, M. K. Tran, Adv. Mater. 2021, 33, 2101589.
- 13H. S. Kim, J. H. Kim, W. Y. Kim, H. S. Lee, S. Y. Kim, M.-S. Khil, Carbon 2017, 119, 40–46.
- 14H. Lee, J. Lee, S. H. Joo, S. J. Kang, S. K. Kwak, S. Yu, C. Park, ACS Appl. Nano Mater 2020, 3, 7633–7642.
- 15C. Ao, S. Yan, L. Zhao, X. Zhao, Y. Wu, Energy Built Environ 2023, 4, 557–567.
10.1016/j.enbenv.2022.04.004 Google Scholar
- 16Q. Tang, Z. Zhou, Z. Chen, J. Phys. Chem. C 2011, 115, 18531–18537.
- 17Z.-l. Cheng, Z.-s. Ma, H.-l. Ding, Z. Liu, J. Mater. Chem. C 2019, 7, 14701–14708.
- 18V. Georgakilas, J. N. Tiwari, K. C. Kemp, J. A. Perman, A. B. Bourlinos, K. S. Kim, R. Zboril, Chem. Rev. 2016, 116, 5464–5519.
- 19D.-G. Kang, M. Park, D.-Y. Kim, M. Goh, N. Kim, K.-U. Jeong, ACS Appl. Mater. Interfaces 2016, 8, 30492–30501.
- 20D.-G. Kang, M. Park, H. Ko, M. Rim, S. Park, D. T. Tran, M.-J. Yoo, N. Kim, K.-U. Jeong, ACS Appl. Mater. Interfaces 2021, 13, 13637–13647.
- 21J. Wang, L. Hu, W. Li, Y. Ouyang, L. Bai, Nanomater. 2022, 12, 3574.
- 22A. M. Islam, H. Lim, N.-H. You, S. Ahn, M. Goh, J. R. Hahn, H. Yeo, S. G. Jang, ACS Macro Lett. 2018, 7, 1180–1185.
- 23T. Kato, T. Nakamura, Y. Agari, M. Ochi, J. Appl. Polym. Sci. 2007, 103, 3169–3174.
- 24M. Park, D.-G. Kang, H. Ko, M. Rim, D. T. Tran, S. Park, M. Kang, T.-W. Kim, N. Kim, K.-U. Jeong, Mater. Horiz. 2020, 7, 2635–2642.
- 25O. Hod, J. Chem. Theory Comput. 2012, 8, 1360–1369.
- 26D. G. Kang, M. Rim, K. H. Ryu, K. M. Lee, N. P. Godman, M. E. McConney, L. De Sio, M. Park, D. Y. Kim, K. U. Jeong, Adv. Funct. Mater. 2022, 32, 2106559.
- 27E. Terazzi, S. Suarez, S. Torelli, H. Nozary, D. Imbert, O. Mamula, J.-P. Rivera, E. Guillet, J.-M. Bénech, G. Bernardinelli, R. Scopelliti, B. Donnio, D. Guillon, J.-C. G. Bünzli, C. Piguet, Adv. Funct. Mater. 2006, 16, 157–168.
- 28D.-G. Kang, D.-Y. Kim, M. Park, Y.-J. Choi, P. Im, J.-H. Lee, S.-W. Kang, K.-U. Jeong, Macromolecules 2015, 48, 898–907.
- 29Y. Çelik, E. Flahaut, E. Suvacı, FlatChem 2017, 1, 74–88.
- 30M. Rim, D.-G. Kang, W. Kim, J. Jang, M. Oh, Y. Wi, S. Park, D. T. Tran, M. Ha, K.-U. Jeong, ACS Nano 2023, 17, 14750–14760.
- 31T. Hu, I. C. Gerber, J. Phys. Chem. C 2013, 117, 2411–2420.
- 32D.-Y. Kim, L. Wang, Y. Cao, X. Yu, S. Z. D. Cheng, S.-W. Kuo, D.-H. Song, S. H. Lee, M.-H. Lee, K.-U. Jeong, J. Mater. Chem. 2012, 22, 16382–16389.
- 33E. Vidović, F. Faraguna, A. Jukić, J. Therm. Anal. Calorim. 2017, 127, 371–380.
- 34Y.-R. Shi, H.-L. Wei, X.-B. Jia, Y.-F. Liu, J. Mater. Sci. 2018, 53, 15569–15587.
- 35Z. Lin, R. Kabe, K. Wang, C. Adachi, Nat. Commun. 2020, 11, 191.
- 36L. Gao, G. V. Baryshnikov, A. Ali, A. Kuklin, C. Qian, X. Zhang, F. Chen, T. Yi, H. Wu, Angew. Chem. Int. Ed. 2024, 63, e202318497.
- 37C. Karunasena, Z. Bjelobrk, C. Risko, Chem. Mater. 2023, 35, 6823–6834.
- 38H. Fu, X. Gao, X. Zhang, L. Ling, Cryst. Growth Des. 2022, 22, 1476–1499.
- 39H. Henck, D. Pierucci, G. Fugallo, J. Avila, G. Cassabois, Y. J. Dappe, M. G. Silly, C. Chen, B. Gil, M. Gatti, Phys. Rev. B 2017, 95, 085410.
- 40W. Sun, L. Wang, Z. Yang, T. Zhu, T. Wu, C. Dong, G. Liu, Chem. Mater. 2018, 30, 7473–7483.
- 41X. Han, H. Kong, T. Chen, J. Gao, Y. Zhao, Y. Sang, G. Hu, Nanomater 2021, 11, 2158.
- 42M. Rim, D. Jung, D. Yu, H. Ko, J. Jang, M. Oh, Y.-J. Choi, L. De Sio, S.-k. Ahn, K.-U. Jeong, ACS Appl. Polym. Mater. 2023, 5, 1325–1333.
- 43D. Bigg, Adv. Polym. Sci. 2005, 119, 1–30.
- 44H. Fricke, Phys. Rev. 1924, 24, 575–587.
- 45H. Chen, V. V. Ginzburg, J. Yang, Y. Yang, W. Liu, Y. Huang, L. Du, B. Chen, Prog. Polym. Sci. 2016, 59, 41–85.
- 46W. Zhou, J. Zuo, X. Zhang, A. Zhou, J. Compos. Mater. 2014, 48, 2517–2526.
- 47L. Chen, H.-F. Xu, S.-J. He, Y.-H. Du, N.-J. Yu, X.-Z. Du, J. Lin, S. Nazarenko, PLoS One 2017, 12, e0170523.
- 48X. Hu, H. Wu, X. Lu, S. Liu, J. Qu, Adv. Compos. Hybrid Mater. 2021, 4, 478–491.
- 49N. Sheshkar, G. Verma, C. Pandey, A. K. Sharma, A. Gupta, J. Polym. Res. 2021, 28, 403.
- 50F. Shahzad, P. Kumar, S. Yu, S. Lee, Y.-H. Kim, S. M. Hong, C. M. Koo, J. Mater. Chem. C 2015, 3, 9802–9810.
- 51B. G. Soares, G. M. Barra, T. Indrusiak, J. Compos. Sci. 2021, 5, 173.
- 52R. Kumar, S. Sahoo, E. Joanni, R. K. Singh, W. K. Tan, K. K. Kar, A. Matsuda, Carbon 2021, 177, 304–331.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.