Host–Guest Antimicrobial Based on Conjugated Oligoelectrolyte and Cyclodextrin
Pengke Liu
Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 P.R. China
Search for more papers by this authorDr. Yuhui Chen
Division of Orthopedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 P.R. China
Search for more papers by this authorDonghao Yao
Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 P.R. China
School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640 P.R. China
Search for more papers by this authorJishan Jia
Division of Orthopedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 P.R. China
Search for more papers by this authorYingying Meng
Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 P.R. China
Search for more papers by this authorPeirong Zhou
Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 P.R. China
Search for more papers by this authorXianan Gao
Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 P.R. China
Search for more papers by this authorYixin Xie
Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 P.R. China
Search for more papers by this authorProf. Liang Yao
Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 P.R. China
Search for more papers by this authorShufen Li
Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 P. R. China
Search for more papers by this authorProf. Lei Wang
School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Guillermo C. Bazan
Institute for Digital Molecular Analytics and Science, Nanyang Technological University, Singapore, 636921 Singapore
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Dr. Shaoyong Xu
Division of Orthopedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 P.R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Prof. Cheng Zhou
Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 P.R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorPengke Liu
Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 P.R. China
Search for more papers by this authorDr. Yuhui Chen
Division of Orthopedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 P.R. China
Search for more papers by this authorDonghao Yao
Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 P.R. China
School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640 P.R. China
Search for more papers by this authorJishan Jia
Division of Orthopedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 P.R. China
Search for more papers by this authorYingying Meng
Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 P.R. China
Search for more papers by this authorPeirong Zhou
Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 P.R. China
Search for more papers by this authorXianan Gao
Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 P.R. China
Search for more papers by this authorYixin Xie
Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 P.R. China
Search for more papers by this authorProf. Liang Yao
Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 P.R. China
Search for more papers by this authorShufen Li
Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 P. R. China
Search for more papers by this authorProf. Lei Wang
School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Guillermo C. Bazan
Institute for Digital Molecular Analytics and Science, Nanyang Technological University, Singapore, 636921 Singapore
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Dr. Shaoyong Xu
Division of Orthopedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 P.R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Prof. Cheng Zhou
Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 P.R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorBoth authors contributed equally to this work.
Abstract
The escalating global threat of antimicrobial resistance necessitates the development of new antimicrobial agents. In this study, we prepared a resveratrol-derived antimicrobial conjugated oligoelectrolyte (COE) named DY6 to enhance drug-like properties. While DY6’s increased hydrophobicity augmented its antibacterial efficacy, it also induced significant cytotoxicity, highlighting the long-existing dilemma of amphiphilic antimicrobials. To mitigate this issue, we employed a supramolecular strategy by complexing DY6 with sodium sulfobutyl ether β-cyclodextrin (SβCD), forming the host–guest inclusion complex DY6@SβCD. This complex elevated the half-maximal inhibitory concentration (IC50) against L929 cells from 9.4 to over 128 µg mL−1 while maintaining a minimum inhibitory concentration (MIC) of 2 µg mL−1 against methicillin-resistant Staphylococcus aureus (MRSA). NMR and UV–vis spectroscopic analyses confirmed that DY6’s aromatic backbone is encapsulated within the hydrophobic cavity of SβCD. Isothermal titration calorimetry revealed that size compatibility and electrostatic interactions are essential for stable complex formation and enhanced biocompatibility. Importantly, DY6@SβCD exhibited no resistance development over 14-day serial passages against S. aureus, significantly outperforming norfloxacin. In biofilm-based MRSA-infected wound and corneal models, DY6@SβCD more effectively reduced bacterial load and inflammation compared to the last-resort antibiotic vancomycin. These findings demonstrate the potential utility of supramolecular host–guest approach based on COEs to overcome the drug-resistant challenges.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
ange202504581-supp-0001-SuppMat.docx2.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Zasloff, Nature 2002, 415, 389–395.
- 2J. Davies, D. Davies, Microbiol. Mol. Biol. Rev. 2010, 74, 417–433.
- 3E. M. Darby, E. Trampari, P. Siasat, M. S. Gaya, I. Alav, M. A. Webber, J. M. A. Blair, Nat. Rev. Microbiol. 2023, 21, 280–295.
- 4C. H. Rammelkamp, Maxon, Thelma, Proc. Soc. Exp. Biol. Med. 1942, 51, 386–389.
- 5H. F. Chambers, F. R. DeLeo, Nat. Rev. Microbiol. 2009, 7, 629–641.
- 6A. S. Lee, H. de Lencastre, J. Garau, J. Kluytmans, S. Malhotra-Kumar, A. Peschel, S. Harbarth, Nat. Rev. Dis. Primers 2018, 4, 18033.
- 7M. Kuroda, T. Ohta, I. Uchiyama, T. Baba, H. Yuzawa, I. Kobayashi, L. Cui, A. Oguchi, K.-i. Aoki, Y. Nagai, J. Lian, T. Ito, M. Kanamori, H. Matsumaru, A. Maruyama, H. Murakami, A. Hosoyama, Y. Mizutani-Ui, N. K. Takahashi, T. Sawano, R.-i. Inoue, C. Kaito, K. Sekimizu, H. Hirakawa, S. Kuhara, S. Goto, J. Yabuzaki, M. Kanehisa, A. Yamashita, K. Oshima, et al., J. Hosp. Infect. 2001, 357, 1225–1240.
- 8T. Ganz, Nat. Rev. Immunol. 2003, 3, 710–720.
- 9C. D. Fjell, J. A. Hiss, R. E. W. Hancock, G. Schneider, Nat. Rev. Drug Discovery 2012, 11, 37–51.
- 10M. Mahlapuu, J. Håkansson, L. Ringstad, C. Björn, Front. Cell. Infect. Microbiol. 2016, 6, 235805.
- 11N. Mookherjee, M. A. Anderson, H. P. Haagsman, D. J. Davidson, Nat. Rev. Drug Discovery 2020, 19, 311–332.
- 12M. Magana, M. Pushpanathan, A. L. Santos, L. Leanse, M. Fernandez, A. Ioannidis, M. A. Giulianotti, Y. Apidianakis, S. Bradfute, A. L. Ferguson, A. Cherkasov, M. N. Seleem, C. Pinilla, C. de la Fuente-Nunez, T. Lazaridis, T. Dai, R. A. Houghten, R. E. W. Hancock, G. P. Tegos, Lancet Infect. Dis. 2020, 20, e216–e230.
- 13J. Xuan, W. Feng, J. Wang, R. Wang, B. Zhang, L. Bo, Z.-S. Chen, H. Yang, L. Sun, Drug Resist. 2023, 68, 100954.
- 14Z. Lai, X. Yuan, H. Chen, Y. Zhu, N. Dong, A. Shan, Biotechnol. Adv. 2022, 59, 107962.
- 15P. Kumar, J. N. Kizhakkedathu, S. K. Straus, Biomolecules 2018, 8, 4.
- 16G. S. Dijksteel, M. M. W. Ulrich, E. Middelkoop, B. K. H. L. Boekema, Front. Microbiol. 2021, 12, 616979.
- 17M. Haktaniyan, M. Bradley, Chem. Soc. Rev. 2022, 51, 8584–8611.
- 18C. Ergene, K. Yasuhara, E. F. Palermo, Polym. Chem. 2018, 9, 2407–2427.
- 19H. Takahashi, G. A. Caputo, K. Kuroda, Biomater. Sci. 2021, 9, 2758–2767.
- 20C. Zhou, G. W. N. Chia, K.-T. Yong, Chem. Soc. Rev. 2022, 51, 9917–9932.
- 21L. E. Garner, J. Park, S. M. Dyar, A. Chworos, J. J. Sumner, G. C. Bazan, J. Am. Chem. Soc. 2010, 132, 10042–10052.
- 22Y. Meng, J. Gao, P. Zhou, X. Qin, M. Tian, X. Wang, C. Zhou, K. Li, F. Huang, Y. Cao, Angew. Chem. Int. Ed. 2024, 63, e202318632.
- 23Y. Meng, J. Gao, X. Huang, P. Liu, C. Zhang, P. Zhou, Y. Bai, J. Guo, C. Zhou, K. Li, F. Huang, Y. Cao, Adv. Mater. 2025, 37, 2415705.
- 24J. Hinks, Y. Wang, W. H. Poh, B. C. Donose, A. W. Thomas, S. Wuertz, S. C. J. Loo, G. C. Bazan, S. Kjelleberg, Y. Mu, T. Seviour, Langmuir 2014, 30, 2429–2440.
- 25H. Yan, Z. D. Rengert, A. W. Thomas, C. Rehermann, J. Hinks, G. C. Bazan, Chem. Sci. 2016, 7, 5714–5722.
- 26J. H. Ortony, T. Chatterjee, L. E. Garner, A. Chworos, A. Mikhailovsky, E. J. Kramer, G. C. Bazan, J. Am. Chem. Soc. 2011, 133, 8380–8387.
- 27C. Zhou, G. W. N. Chia, J. C. S. Ho, T. Seviour, T. Sailov, B. Liedberg, S. Kjelleberg, J. Hinks, G. C. Bazan, Angew. Chem. Int. Ed. 2018, 57, 8069–8072.
- 28J. Limwongyut, A. S. Moreland, K. Zhang, M. Raynor, S. Chattagul, T. A. Fitzgerald, Y. Le Breton, D. V. Zurawski, G. C. Bazan, J. Med. Chem. 2023, 66, 14303–14314.
- 29C. G. Fraga, K. D. Croft, D. O. Kennedy, F. A. Tomás-Barberán, Food Funct. 2019, 10, 514–528.
- 30B. Salehi, A. P. Mishra, M. Nigam, B. Sener, M. Kilic, M. Sharifi-Rad, P. V. T. Fokou, N. Martins, J. Sharifi-Rad, Biomedicines 2018, 6, 91.
- 31J. Duan, M. Li, Z. Hao, X. Shen, L. Liu, Y. Jin, S. Wang, Y. Guo, L. Yang, L. Wang, F. Yu, Emerg. Microbes Infect. 2018, 7, 1–10.
- 32A. Tiihonen, S. J. Cox-Vazquez, Q. Liang, M. Ragab, Z. Ren, N. T. P. Hartono, Z. Liu, S. Sun, C. Zhou, N. C. Incandela, J. Limwongyut, A. S. Moreland, S. Jayavelu, G. C. Bazan, T. Buonassisi, J. Am. Chem. Soc. 2021, 143, 18917–18931.
- 33D. A. Tinjacá, F. Martínez, O. A. Almanza, A. Jouyban, W. E. Acree, Jr., ACS Omega 2022, 7, 37988–38002.
- 34S. K. Poole, C. F. Poole, J. Chromatogr. B 2003, 797, 3–19.
- 35Y. Wang, E. M. Jones, Y. Tang, E. Ji, G. P. Lopez, E. Y. Chi, K. S. Schanze, D. G. Whitten, Langmuir 2011, 27, 10770–10775.
- 36M. Yan, S. Wu, Y. Wang, M. Liang, M. Wang, W. Hu, G. Yu, Z. Mao, F. Huang, J. Zhou, Adv. Mater. 2024, 36, e2304249.
- 37I. V. Kolesnichenko, E. V. Anslyn, Chem. Soc. Rev. 2017, 46, 2385–2390.
- 38X. Li, H. Bai, Y. Yang, J. Yoon, S. Wang, X. Zhang, Adv. Mater. 2019, 31, 1805092.
- 39J. Chen, Q. Meng, Y. Zhang, M. Dong, L. Zhao, Y. Zhang, L. Chen, Y. Chai, Z. Meng, C. Wang, X. Jia, C. Li, Angew. Chem. Int. Ed. 2021, 60, 11288–11293.
- 40C. V. Pardeshi, R. V. Kothawade, A. R. Markad, S. R. Pardeshi, A. D. Kulkarni, P. J. Chaudhari, M. R. Longhi, N. Dhas, J. B. Naik, S. J. Surana, M. C. García, Carbohydr. Polym. 2023, 301, 120347.
- 41Z. Liu, Y. Liu, Chem. Soc. Rev. 2022, 51, 4786–4827.
- 42X. Du, M. Ma, Y. Zhang, X. Yu, L. Chen, H. Zhang, Z. Meng, X. Jia, J. Chen, Q. Meng, C. Li, Angew. Chem. Int. Ed. 2023, 62, e202301857.
- 43R. M. Epand, R. F. Epand, Biochim. Biophys. Acta 2009, 1788, 289–294.
- 44M. Vaara, Microbiol. Rev. 1992, 56, 395–411.
- 45H.-J. Schneider, F. Hacket, V. Rüdiger, H. Ikeda, Chem. Rev. 1998, 98, 1755–1786.
- 46P. Thordarson, Chem. Soc. Rev. 2011, 40, 1305–1323.
- 47J. Yang, H.-J. Ye, H.-M. Xiang, X. Zhou, P.-Y. Wang, S.-S. Liu, B.-X. Yang, H.-B. Yang, L.-W. Liu, S. Yang, Adv. Funct. Mater. 2023, 33, 2303206.
- 48K. P. Sambasevam, S. Mohamad, N. M. Sarih, N. A. Ismail, Int. J. Mol. Sci. 2013, 14, 3671–3682.
- 49H.-J. Schneider, Angew. Chem. Int. Ed. 2009, 48, 3924–3977.
- 50D. M. Heithoff, S. P. Mahan, L. Barnes, V. S. A. Leyn, C. X. George, J. E. Zlamal, J. Limwongyut, G. C. Bazan, J. C. Fried, L. N. Fitzgibbons, J. K. House, C. E. Samuel, A. L. Osterman, D. A. Low, M. J. Mahan, eBioMedicine 2023, 89, 104461.
- 51M. V. Rekharsky, Y. Inoue, Chem. Rev. 1998, 98, 1875–1918.
- 52F. Biedermann, W. M. Nau, H.-J. Schneider, Angew. Chem. Int. Ed. 2014, 53, 11158–11171.
- 53F. Biedermann, V. D. Uzunova, O. A. Scherman, W. M. Nau, A. De Simone, J. Am. Chem. Soc. 2012, 134, 15318–15323.
- 54D. C. Morais, B. B. M. Vieira, M. C. Carvalho, F. B. Miguez, J. Fedoce Lopes, F. B. De Sousa, Chem. Phys. Lett. 2024, 851, 141500.
- 55Z.-Y. Zhang, C. Li, Acc. Chem. Res. 2022, 55, 916–929.
- 56R. Ruhal, R. Kataria, Microbiol. Res. 2021, 251, 126829.
- 57O. Ciofu, C. Moser, P. Ø. Jensen, N. Høiby, Nat. Rev. Microbiol. 2022, 20, 621–635.
- 58A. Uberoi, A. McCready-Vangi, E. A. Grice, Nat. Rev. Microbiol. 2024, 22, 507–521.
- 59Y. Zhan, X. Hu, Y. Li, Y. Wang, H. Chen, C. A. Omolo, T. Govender, H. Li, F. Huang, L. Shi, X. Hu, Y. Liu, Adv. Funct. Mater. 2023, 33, 2214299.
- 60X. Jin, X. Zhang, X. Ding, T. Tian, C.-K. Tseng, X. Luo, X. Chen, C.-J. Lo, M. C. Leake, F. Bai, Proc. Natl. Acad. Sci. USA 2023, 120, e2208348120.
- 61J. Sun, M. Li, M. Lin, B. Zhang, X. Chen, Adv. Mater. 2021, 33, 2104402.
- 62W. Cheng, T. Xu, L. Cui, Z. Xue, J. Liu, R. Yang, S. Qin, Y. Guo, J. Med. Chem. 2023, 66, 962–975.
- 63K. Zhang, J. Limwongyut, A. S. Moreland, S. C. J. Wei, T. J. Jia Min, Y. Sun, S. J. Shin, S.-Y. Kim, B. W. Jhun, K. Pethe, G. C. Bazan, Sci. Transl. Med. 2024, 16, eadi7558.
- 64H. Zhang, Q. Chen, J. Xie, Z. Cong, C. Cao, W. Zhang, D. Zhang, S. Chen, J. Gu, S. Deng, Z. Qiao, X. Zhang, M. Li, Z. Lu, R. Liu, Sci. Adv. 2023, 9, eabn0771.
- 65S. Schreier, S. V. P. Malheiros, E. de Paula, Biochim. Biophys. Acta 2000, 1508, 210–234.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.