In Situ Studies of Multi-Carrier Dynamics in Electrochemically-Charged Colloidal CdSe/CdS Core/Shell Quantum Dots
Sheng He
Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia, 30322 USA
Both authors contributed equally to this work.
Search for more papers by this authorNandan Ghorai
Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia, 30322 USA
Both authors contributed equally to this work.
Search for more papers by this authorArun Ashokan
Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia, 30322 USA
Search for more papers by this authorSara T. Gebre
Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia, 30322 USA
Search for more papers by this authorZhicheng Yang
Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia, 30322 USA
Search for more papers by this authorCorresponding Author
Tianquan Lian
Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia, 30322 USA
E-mail: [email protected]
Search for more papers by this authorSheng He
Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia, 30322 USA
Both authors contributed equally to this work.
Search for more papers by this authorNandan Ghorai
Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia, 30322 USA
Both authors contributed equally to this work.
Search for more papers by this authorArun Ashokan
Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia, 30322 USA
Search for more papers by this authorSara T. Gebre
Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia, 30322 USA
Search for more papers by this authorZhicheng Yang
Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia, 30322 USA
Search for more papers by this authorCorresponding Author
Tianquan Lian
Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia, 30322 USA
E-mail: [email protected]
Search for more papers by this authorAbstract
The application of semiconductor nanocrystals (NCs) in optoelectronic devices and photocatalysis inevitably involves them in charged states. The carrier and exciton dynamics of electrochemically charged NCs in solutions have yet to be reported. Herein, the electrochemical charging effects in colloidal CdSe/CdS core/shell quantum dots (QDs) are systematically investigated using static spectroelectrochemistry (SEC) and in situ transient absorption (TA) spectroscopy. Static SEC reveals the presence of in-gap trap states from 0.9 eV below the conduction band (CB) edge. Negligible changes in TA spectra and kinetics were observed from open circuit potential (OCP) to more anodic potentials within the QD band gap. At cathodic potentials, the negatively charged QDs show band edge trion decay with a lifetime of 690 ± 31 ps and slower 1P to 1S electron relaxation with time constants of 12.4 ± 0.8 ps assigned to the spin blockade effect and 316 ± 35 ps assigned to the phonon bottleneck effect. Our study reveals rich effects of charging on QD excited state under nearly native conditions.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
ange202503972-sup-0004-SuppMat.pdf1.6 MB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. L. Efros, L. E. Brus, ACS Nano 2021, 15, 6192–6210.
- 2J. M. Pietryga, Y. S. Park, J. Lim, A. F. Fidler, W. K. Bae, S. Brovelli, V. I. Klimov, Chem. Rev. 2016, 116, 10513–10622.
- 3Q. Li, K. Wu, H. Zhu, Y. Yang, S. He, T. Lian, Chem. Rev. 2024, 124, 5695–5763.
- 4Y. H. Zhang, G. H. Wu, F. Liu, C. Ding, Z. G. Zou, Q. Shen, Chem. Soc. Rev. 2020, 49, 49–84.
- 5X.-B. Li, C.-H. Tung, L.-Z. Wu, Nat. Rev. Chem. 2018, 2, 160–173.
- 6L. Sun, J. J. Choi, D. Stachnik, A. C. Bartnik, B. R. Hyun, G. G. Malliaras, T. Hanrath, F. W. Wise, Nat. Nanotechnol. 2012, 7, 369–373.
- 7H. Y. Xu, J. J. Song, P. H. Zhou, Y. Song, J. Xu, H. B. Shen, S. C. Fang, Y. Gao, Z. J. Zuo, J. M. Pina, O. Voznyy, C. M. Yang, Y. F. Hu, J. Li, J. F. Du, E. H. Sargent, F. J. Fan, Nat. Photonics 2024, 18, 186–191.
- 8J. J. Geuchies, B. Brynjarsson, G. Grimaldi, S. Gudjonsdottir, W. van der Stam, W. H. Evers, A. J. Houtepen, ACS Nano 2021, 15, 377–386.
- 9O. V. Kozlov, Y. S. Park, J. Roh, I. Fedin, T. Nakotte, V. I. Klimov, Science 2019, 365, 672–675.
- 10N. Ahn, C. Livache, V. Pinchetti, H. Jung, H. Jin, D. Hahm, Y. S. Park, V. I. Klimov, Nature 2023, 617, 79–85.
- 11C. Wang, B. L. Wehrenberg, C. Y. Woo, P. Guyot-Sionnest, J. Phys. Chem. B 2004, 108, 9027–9031.
- 12J. Lim, Y. S. Park, V. I. Klimov, Nat. Mater. 2018, 17, 42–49.
- 13J. Wang, L. Wang, S. Yu, T. Ding, D. Xiang, K. Wu, Nat. Commun. 2021, 12, 550.
- 14S. J. Sherman, B. Hou, M. J. Coley-O'Rourke, K. E. Shulenberger, L. M. Pellows, E. Rabani, G. Dukovic, ACS Nano 2025, 19, 7055–7063.
- 15K. E. Shulenberger, H. R. Keller, L. M. Pellows, N. L. Brown, G. Dukovic, J. Phys. Chem. C 2021, 125, 22650–22659.
- 16J. D. Rinehart, A. M. Schimpf, A. L. Weaver, A. W. Cohn, D. R. Gamelin, J. Am. Chem. Soc. 2013, 135, 18782–18785.
- 17H. Lei, L. Lv, X. Zhou, S. Liu, M. Zhu, H. Wang, H. Qin, Q. Fang, X. Peng, J. Am. Chem. Soc. 2024, 146, 21948–21959.
- 18J. Wang, T. Ding, K. Wu, J. Am. Chem. Soc. 2018, 140, 7791–7794.
- 19J. Wang, T. Ding, K. Wu, J. Am. Chem. Soc. 2018, 140, 10117–10120.
- 20K. H. Hartstein, C. S. Erickson, E. Y. Tsui, A. Marchioro, D. R. Gamelin, ACS Nano 2017, 11, 10430–10438.
- 21J. Mooney, M. M. Krause, J. I. Saari, P. Kambhampati, Phys. Rev. B 2013, 87, 081201.
- 22J. Mooney, M. M. Krause, J. I. Saari, P. Kambhampati, J. Chem. Phys. 2013, 138, 204705.
- 23C. Wang, M. Shim, P. Guyot-Sionnest, Appl. Phys. Lett. 2002, 80, 4–6.
- 24P. Guyot-Sionnest, C. Wang, J. Phys. Chem. B 2003, 107, 7355–7359.
- 25D. Yu, C. Wang, P. Guyot-Sionnest, Science 2003, 300, 1277–1280.
- 26J. Garoz-Ruiz, J. V. Perales-Rondon, A. Heras, A. Colina, Isr. J. Chem. 2019, 59, 679–694.
- 27W. van der Stam, I. du Fosse, G. Grimaldi, J. O. V. Monchen, N. Kirkwood, A. J. Houtepen, Chem. Mater. 2018, 30, 8052–8061.
- 28S. C. Boehme, J. M. Azpiroz, Y. V. Aulin, F. C. Grozema, D. Vanmaekelbergh, L. D. Siebbeles, I. Infante, A. J. Houtepen, Nano Lett. 2015, 15, 3056–3066.
- 29C. Galland, Y. Ghosh, A. Steinbruck, M. Sykora, J. A. Hollingsworth, V. I. Klimov, H. Htoon, Nature 2011, 479, 203–207.
- 30S. C. Boehme, T. A. Walvis, I. Infante, F. C. Grozema, D. Vanmaekelbergh, L. D. Siebbeles, A. J. Houtepen, ACS Nano 2014, 8, 7067–7077.
- 31B. Huang, Y. Huang, H. Zhang, X. Lu, X. Gao, S. Zhuang, ACS Appl. Mater. Interfaces 2023, 15, 21354–21363.
- 32P. P. Jha, P. Guyot-Sionnest, J. Phys. Chem. C 2007, 111, 15440–15445.
- 33W. van der Stam, G. Grimaldi, J. J. Geuchies, S. Gudjonsdottir, P. T. van Uffelen, M. van Overeem, B. Brynjarsson, N. Kirkwood, A. J. Houtepen, Chem. Mater. 2019, 31, 8484–8493.
- 34A. K. Gooding, D. E. Gomez, P. Mulvaney, ACS Nano 2008, 2, 669–676.
- 35A. Ashokan, P. Mulvaney, Chem. Mater. 2021, 33, 1353–1362.
- 36A. Honarfar, H. Mourad, W. H. Lin, A. Polukeev, A. Rahaman, M. Abdellah, P. Chábera, G. Pankratova, L. Gorton, K. B. Zheng, T. Pullerits, ACS Appl. Energy Mater. 2020, 3, 12525–12531.
- 37A. Honarfar, P. Chabera, W. Lin, J. Meng, H. Mourad, G. Pankratova, L. Gorton, K. Zheng, T. Pullerits, J. Phys. Chem. C 2021, 125, 14332–14337.
- 38C. Wang, M. Shim, P. Guyot-Sionnest, Science 2001, 291, 2390–2392.
- 39N. Myung, Z. Ding, A. J. Bard, Nano Lett. 2002, 2, 1315–1319.
- 40J. Park, Y. H. Won, T. Kim, E. Jang, D. Kim, Small 2020, 16, e2003542.
- 41A. Ashokan, J. Han, J. A. Hutchison, P. Mulvaney, ACS Nano 2023, 17, 1247–1254.
- 42A. Ashokan, J. A. Hutchison, P. Mulvaney, Chem. Mater. 2024, 36, 1810–1817.
- 43J. Yu, Z. Chen, H. Zhang, J. A. Hutchison, P. Mulvaney, A. Ashokan, Nano Lett. 2024, 24, 14695–14701.
- 44L. Wang, Z. Chen, G. Liang, Y. Li, R. Lai, T. Ding, K. Wu, Nat. Commun. 2019, 10, 4532.
- 45Y. Yang, D. P. Ostrowski, R. M. France, K. Zhu, J. van de Lagemaat, J. M. Luther, M. C. Beard, Nat. Photonics 2016, 10, 53–59.
- 46S. He, T. Jin, A. Ni, T. Lian, J. Phys. Chem. Lett. 2023, 14, 2241–2250.
- 47S. Yu, X. B. Fan, X. Wang, J. Li, Q. Zhang, A. Xia, S. Wei, L. Z. Wu, Y. Zhou, G. R. Patzke, Nat. Commun. 2018, 9, 4009.
- 48X. Li, J. Du, G. Zhao, B. Zhang, C. Livache, N. Ahn, Y. Jia, M. Li, Y. Chen, J. Zhu, J. Guo, V. I. Klimov, K. Wu, Adv. Mater. 2024, 36, e2308979.
- 49X. Lin, Y. Yang, X. Li, Y. Lv, Z. Wang, J. Du, X. Luo, D. Zhou, C. Xiao, K. Wu, Nat. Nanotechnol. 2025, 20, 229–236.
- 50D. A. Hanifi, N. D. Bronstein, B. A. Koscher, Z. Nett, J. K. Swabeck, K. Takano, A. M. Schwartzberg, L. Maserati, K. Vandewal, Y. van de Burgt, A. Salleo, A. P. Alivisatos, Science 2019, 363, 1199–1202.
- 51S. He, Q. Li, T. Jin, T. Lian, J. Chem. Phys. 2022, 156, 054704.
- 52B. Li, M. Lu, W. Liu, X. Zhu, X. He, Y. Yang, Q. Yang, Nanoscale Res. Lett. 2017, 12, 626.
- 53H. Lei, S. Liu, J. Li, C. Li, H. Qin, X. Peng, ACS Nano 2023, 17, 21962–21972.
- 54V. I. Klimov, Annu. Rev. Phys. Chem. 2007, 58, 635–673.
- 55M. Saba, M. Aresti, F. Quochi, M. Marceddu, M. A. Loi, J. Huang, D. V. Talapin, A. Mura, G. Bongiovanni, ACS Nano 2013, 7, 229–238.
- 56D. Spittel, J. Poppe, C. Meerbach, C. Ziegler, S. G. Hickey, A. Eychmuller, ACS Nano 2017, 11, 12174–12184.
- 57W. Sun, C. Olikagu, K. J. Carothers, D. Pattadar, J. Pyun, S. S. Saavedra, N. R. Armstrong, Phys. Chem. C 2022, 126, 20183–20195.
- 58F. Cai, H. Zhang, H. Zhang, B. Huang, H. Yang, Appl. Phys. Lett. 2024, 124, 101110.
- 59T. Ghosh, J. Dehnel, M. Fabian, E. Lifshitz, R. Baer, S. Ruhman, J. Phys. Chem. Lett. 2019, 10, 2341–2348.
- 60A. Pandey, P. Guyot-Sionnest, Science 2008, 322, 929–932.
- 61V. I. Klimov, D. W. McBranch, Phys. Rev. Lett. 1998, 80, 4028–4031.
- 62P. Guyot-Sionnest, B. Wehrenberg, D. Yu, J. Chem. Phys. 2005, 123, 074709.
- 63K. Wu, J. Lim, V. I. Klimov, ACS Nano 2017, 11, 8437–8447.
- 64P. Guyot-Sionnest, M. Shim, C. Matranga, M. Hines, Phys. Rev. B 1999, 60, R2181–R2184.
- 65Z. Hu, S. Liu, H. Qin, J. Zhou, X. Peng, J. Am. Chem. Soc. 2020, 142, 4254–4264.
- 66J. Wang, T. Ding, J. Leng, S. Jin, K. Wu, J. Phys. Chem. Lett. 2018, 9, 3372–3377.
- 67P. P. Jha, P. Guyot-Sionnest, ACS Nano 2009, 3, 1011–1015.
- 68A. L. Weaver, D. R. Gamelin, J. Am. Chem. Soc. 2012, 134, 6819–6825.
- 69A. Puntambekar, Q. Wang, L. Miller, N. Smieszek, V. Chakrapani, ACS Nano 2016, 10, 10988–10999.
- 70S. Crooker, J. Hollingsworth, S. Tretiak, V. I. Klimov, Phys. Rev. Lett. 2002, 89, 186802.
- 71N. Kholmicheva, P. Moroz, H. Eckard, G. Jensen, M. Zamkov, ACS Energy Lett. 2017, 2, 154–160.
- 72M. Shim, P. Guyot-Sionnest, Nature 2000, 407, 981–983.
- 73H. Zhu, Y. Yang, K. Wu, T. Lian, Annu. Rev. Phys. Chem. 2016, 67, 259–281.
- 74H. Zhu, N. Song, T. Lian, J. Am. Chem. Soc. 2010, 132, 15038–15045.
- 75H. Zhu, N. Song, W. Rodriguez-Cordoba, T. Lian, J. Am. Chem. Soc. 2012, 134, 4250–4257.
- 76R. D. Harris, S. Bettis Homan, M. Kodaimati, C. He, A. B. Nepomnyashchii, N. K. Swenson, S. Lian, R. Calzada, E. A. Weiss, Chem. Rev. 2016, 116, 12865–12919.
- 77K. Wu, T. Lian, Chem. Soc. Rev. 2016, 45, 3781–3810.
- 78T. Ding, G. Liang, J. Wang, K. Wu, Chem. Sci. 2018, 9, 7253–7260.
- 79J. Wang, T. Ding, K. Wu, J. Am. Chem. Soc. 2020, 142, 13934–13940.
- 80K. Kumar, M. Wachtler, Nanomaterials 2023, 13, 1579.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.