Utilizing the Mn(II) Dissolution-Induced Vacancy for Optimum Mg2+ Storage of Spinel Mn3O4
This article relates to:
-
Frontispiece: Utilizing the Mn(II) Dissolution-Induced Vacancy for Optimum Mg2+ Storage of Spinel Mn3O4
- Volume 137Issue 30Angewandte Chemie
- First Published online: July 22, 2025
Zhongyu Pan
Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Changbaishan Laboratory, Jilin University, Changchun, 130012 China
Search for more papers by this authorZhou Jiang
Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Changbaishan Laboratory, Jilin University, Changchun, 130012 China
Search for more papers by this authorDr. Tingting Qin
Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077 China
Search for more papers by this authorProf. Dong Wang
Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Changbaishan Laboratory, Jilin University, Changchun, 130012 China
Search for more papers by this authorFuxi Liu
Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Changbaishan Laboratory, Jilin University, Changchun, 130012 China
Search for more papers by this authorHe Yang
Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Changbaishan Laboratory, Jilin University, Changchun, 130012 China
Search for more papers by this authorDr. Qing Liang
Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Changbaishan Laboratory, Jilin University, Changchun, 130012 China
Search for more papers by this authorCorresponding Author
Prof. Wei Zhang
Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Changbaishan Laboratory, Jilin University, Changchun, 130012 China
E-mail: [email protected]
Search for more papers by this authorProf. Weitao Zheng
Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Changbaishan Laboratory, Jilin University, Changchun, 130012 China
Search for more papers by this authorZhongyu Pan
Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Changbaishan Laboratory, Jilin University, Changchun, 130012 China
Search for more papers by this authorZhou Jiang
Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Changbaishan Laboratory, Jilin University, Changchun, 130012 China
Search for more papers by this authorDr. Tingting Qin
Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077 China
Search for more papers by this authorProf. Dong Wang
Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Changbaishan Laboratory, Jilin University, Changchun, 130012 China
Search for more papers by this authorFuxi Liu
Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Changbaishan Laboratory, Jilin University, Changchun, 130012 China
Search for more papers by this authorHe Yang
Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Changbaishan Laboratory, Jilin University, Changchun, 130012 China
Search for more papers by this authorDr. Qing Liang
Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Changbaishan Laboratory, Jilin University, Changchun, 130012 China
Search for more papers by this authorCorresponding Author
Prof. Wei Zhang
Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Changbaishan Laboratory, Jilin University, Changchun, 130012 China
E-mail: [email protected]
Search for more papers by this authorProf. Weitao Zheng
Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Changbaishan Laboratory, Jilin University, Changchun, 130012 China
Search for more papers by this authorAbstract
Manganese-based oxide can theoretically exert the multivalent advantages of an aqueous magnesium-ion cathode due to its redox activity and abundant crystal structure. However, sluggish diffusion kinetics of Mg2+ and Mn dissolution limit the rate performance and structure stability. Herein, we successfully utilize the notorious dissolution of Mn(II) tetrahedral site contributed vacancies for packaging optimum Mg2+ storage of a popular spinel Mn3O4 electrode. Such mechanism reverses the sluggish diffusion kinetics. Moreover, merited by the common ion effect and drug dissolution, a suitable preaddition of Mn2+ to electrolyte inhibit Mn(III) dissolution and optimize the integrity of the spinel framework. Impressively, the cathode achieves a reversible capacity of 310 mAh g−1 and a stable cycle performance of 2000 cycles with 94.9% retention. Our research shows that reversible insertion/extraction at vacancies and effective stabilization of spinel framework is a powerful strategy to achieve Mg2+ ion energy storage system with high rate performance and long lifespan.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in Supporting Information of this article.
Supporting Information
Filename | Description |
---|---|
ange202503535-supp-0001-SuppMat.docx165.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Li, C. Liu, J. Meng, P. Hei, Y. Sai, W. Li, J. Wang, W. Cui, Y. Song, X. X. Liu, Adv. Funct. Mater. 2021, 9, 11472–11500.
- 2Y. Gao, H. Yang, Y. Bai, C. Wu, J. Mater. Chem. A 2021, 9, 11472–11500.
- 3Y. Liu, G. He, H. Jiang, I. P. Parkin, P. R. Shearing, D. J. L. Brett, Adv. Funct. Mater. 2021, 31, 2010445.
- 4R. Zhou, Z. Hou, Q. Liu, X. Du, J. Huang, B. Zhang, Adv. Funct. Mater. 2022, 32, 2200929.
- 5X. Tang, D. Zhou, B. Zhang, S. Wang, P. Li, H. Liu, X. Guo, P. Jaumaux, X. Gao, Y. Fu, C. Wang, C. Wang, G. Wang, Nat. Commun. 2021, 12, 2857.
- 6K. Leong, W. Pan, X. Yi, S. Lou, X. Zhao, Y. Zhang, Y. Wang, J. Mao, Y. Chen, J. Xuan, H. Wang, D. Y. C. Leung, Sci. Adv. 2023, 9, eadh1181.
- 7M. Huang, X. Wang, J. Wang, J. Meng, X. Liu, Q. He, L. Geng, Q. An, J. Yang, L. Mai, Angew. Chem. Int. Ed. 2023, 62, e202308961.
- 8T. Koketsu, J. Ma, B. J. Morgan, M. Body, C. Legein, W. Dachraoui, M. Giannini, A. Demortière, M. Salanne, F. Dardoize, H. Groult, O. J. Borkiewicz, K. W. Chapman, P. Strasser, D. Dambournet, Nature Mater. 2017, 16, 1142–1148.
- 9V. Verma, S. Kumar, W. Manalastas, R. Satish, M. Srinivasan, Adv. Sustain. Syst. 2018, 3, 1800111.
- 10W. Chen, X. Zhan, R. Yuan, S. Pidaparthy, A. X. B. Yong, H. An, Z. Tang, K. Yin, A. Patra, H. Jeong, C. Zhang, K. Ta, Z. W. Riedel, R. M. Stephens, D. P. Shoemaker, H. Yang, A. A. Gewirth, P. V. Braun, E. Ertekin, J.-M. Zuo, Q. Chen, Nature Mater. 2022, 22, 92–99.
- 11Y. Yuan, R. Sharpe, K. He, C. Li, M. T. Saray, T. Liu, W. Yao, M. Cheng, H. Jin, S. Wang, K. Amine, R. Shahbazian-Yassar, M. S. Islam, J. Lu, Nat. Sustain. 2022, 5, 890–898.
- 12B. J. Rani, A. Sivanantham, I. S. Cho, Adv. Funct. Mater. 2023, 33, 2303002.
- 13D. Wu, Y. Kang, F. Wang, J. Yang, Y. Xu, Y. Zhuang, J. Wu, J. Zeng, Y. Yang, J. Zhao, Adv. Energy Mater. 2023, 13, 2301145.
- 14C. Sun, G. Huang, C. Xu, L. Li, A. Tang, X. Zhou, J. Wang, F. Pan, Energy Stor. Mater. 2024, 66, 103197.
- 15X. Ye, X. Xiao, Z. Wu, Y. Zhan, X. Wu, S. Liu, J. Mater. Chem. A 2024, 12, 23337–23363.
- 16Y. Ding, S. Zhang, J. Li, Y. Sun, B. Yin, H. Li, Y. Ma, Z. Wang, H. Ge, D. Su, T. Ma, Adv. Funct. Mater. 2022, 33, 2210519.
- 17G. Liu, Q. Chi, Y. Zhang, Q. Chen, C. Zhang, K. Zhu, D. Cao, Chem. Commun. 2018, 54, 9474–9477.
- 18Y.-F. Li, Z.-P. Liu, J. Am. Chem. Soc. 2018, 140, 1783–1792.
- 19J. Hao, J. Mou, J. Zhang, L. Dong, W. Liu, C. Xu, F. Kang, Electrochim. Acta 2018, 259, 170–178.
- 20C. Wu, S. Gu, Q. Zhang, Y. Bai, M. Li, Y. Yuan, H. Wang, X. Liu, Y. Yuan, N. Zhu, F. Wu, H. Li, L. Gu, J. Lu, Nat. Commun. 2019, 10, 73.
- 21H. Jiang, Z. Wei, L. Ma, Y. Yuan, J. J. Hong, X. Wu, D. P. Leonard, J. Holoubek, J. J. Razink, W. F. Stickle, F. Du, T. Wu, J. Lu, X. Ji, Angew. Chem. Int. Ed. 2019, 58, 5286–5291.
- 22Y. Yang, C. Gao, T. Luo, J. Song, T. Yang, H. Wang, K. Zhang, Y. Zuo, W. Xiao, Z. Jiang, T. Chen, D. Xia, Adv. Mater. 2023, 35, 2307138.
- 23G. Assat, D. Foix, C. Delacourt, A. Iadecola, R. Dedryvère, J.-M. Tarascon, Nat. Commun. 2017, 8, 2219.
- 24C. Liu, Y. Chen, W. Huang, Y. Situ, H. Huang, Appl. Surf. Sci. 2018, 458, 10–17.
- 25C. Liu, Y. Chen, X. Sun, B. Chen, Y. Situ, H. Huang, Electrochim. Acta 2019, 324, 134894.
- 26C. Zhang, X. Zhan, T. Al-Zoubi, Y. Ma, P.-C. Shih, F. Wang, W. Chen, S. Pidaparthy, R. M. Stephens, Q. Chen, J.-M. Zuo, H. Yang, Nano Energy 2022, 102, 107696.
- 27C. Choi, D. S. Ashby, D. M. Butts, R. H. DeBlock, Q. Wei, J. Lau, B. Dunn, Nat. Rev. Mater. 2019, 5, 5–19.
- 28L. Malavasi, P. Galinetto, M. C. Mozzati, C. B. Azzoni, G. Flor, Phys. Chem. Chem. Phys. 2002, 4, 3876–3880.
- 29F. Liu, X. Zou, N. Yue, W. Zhang, W. Zheng, Cell Rep. Phys. Sci. 2023, 4, 101607.
- 30T. Qin, X. Zhao, Y. Sui, D. Wang, W. Chen, Y. Zhang, S. Luo, W. Pan, Z. Guo, D. Y. C. Leung, Adv. Mater. 2024, 36, 2402644.
- 31R. Zhou, K. Fan, Z. Hou, Q. Liu, H. Huang, B. Zhang, Energy Stor. Mater. 2023, 63, 103012.
- 32S. Zhang, Y. Wang, Y. Sun, Y. Wang, Y. Yang, P. Zhang, X. Lv, J. Wang, H. Zhu, Y. NuLi, Small 2023, 19, 2300148.
- 33S. Liu, Y. Yin, D. Ni, K. S. Hui, K. N. Hui, S. Lee, C.-Y. Ouyang, S. C. Jun, Energy Stor. Mater. 2019, 19, 186–196.
- 34F. Wang, X. Fan, T. Gao, W. Sun, Z. Ma, C. Yang, F. Han, K. Xu, C. Wang, ACS Cent. Sci. 2017, 3, 1121–1128.
- 35Z. Liu, G. Pang, S. Dong, Y. Zhang, C. Mi, X. Zhang, Electrochim. Acta 2019, 311, 1–7.
- 36H. Zhang, K. Ye, K. Zhu, R. Cang, J. Yan, K. Cheng, G. Wang, D. Cao, Electrochim. Acta 2017, 256, 357–364.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.