Dynamic Crystal-Structure and Active-Site of Defective ZnAl-Catalysts During CO2 Photoreduction
Zhengchao Wang
State Key Laboratory for Oxo Synthesis and Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 P.R. China
University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Search for more papers by this authorProf. Rongsheng Cai
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 P.R. China
Search for more papers by this authorCorresponding Author
Dr. Yajun Zhang
State Key Laboratory for Oxo Synthesis and Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorXiaojuan Huang
State Key Laboratory for Oxo Synthesis and Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Yingpu Bi
State Key Laboratory for Oxo Synthesis and Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorZhengchao Wang
State Key Laboratory for Oxo Synthesis and Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 P.R. China
University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Search for more papers by this authorProf. Rongsheng Cai
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 P.R. China
Search for more papers by this authorCorresponding Author
Dr. Yajun Zhang
State Key Laboratory for Oxo Synthesis and Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorXiaojuan Huang
State Key Laboratory for Oxo Synthesis and Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Yingpu Bi
State Key Laboratory for Oxo Synthesis and Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Understanding of surface defects of a catalyst during the reaction process is critical to establish an accurate structure-activity relationship. Herein, combining operando X-ray diffraction/photoelectron spectroscopy with scanning probe microscope, we have first established the correlations between CO2 photoreduction activities and crystal-structure/active-site of defective ZnAl layered double hydroxides (ZnAl-LDH). Specifically, the introduction of oxygen vacancies in ZnAl-LDH could effectively promote the selective adsorption of both CO2 and H2O molecules on surface Al and Zn active sites, respectively, leading to opposite transition states and the evident shrinking of crystalline structures. Under light irradiation, the adsorbed CO2 molecules transformed into *COOH intermediate on surface Al active sites, while the H2O molecules dissociated into OH group on Zn sites to provide proton, simultaneously leading to the expansion of crystalline structures and increase of layer spacing. Accordingly, these defect-dependent evolutions of surface active sites and crystalline structure contributed to the significant improvement of CO2 reduction to CO activity (17.2 µmol g−1 h−1), much higher than that of pristine ZnAl-LDH (6.3 µmol g−1 h−1). This work provides new insights for in-depth understanding of the electronic and crystalline changes of defective photocatalysts during the reaction process.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
Filename | Description |
---|---|
ange202502834-sup-0001-SuppMat.docx5.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Aresta, A. Dibenedetto, A. Angelini, Chem. Rev. 2014, 114, 1709–1742.
- 2S. Chu, Y. Cui, N. Liu, Nat. Mater. 2017, 16, 16–22.
- 3X. Li, J. Yu, M. Jaroniec, X. Chen, Chem. Rev. 2019, 119, 3962–4179.
- 4S. Roy, A. Joseph, X. Zhang, S. Bhattacharyya, A. B. Puthirath, A. Biswas, C. S. Tiwary, R. Vajtai, P. M. Ajayan, Chem. Rev. 2024, 124, 9376–9456.
- 5Q. Wang, D. Astruc, Chem. Revi 2020, 120, 1438–1511.
- 6L. Zhang, J. Zhang, H. Yu, J. Yu, Adv. Mate. 2022, 34, 2107668.
- 7Q. Hu, Z. Zhang, D. He, J. Wu, J. Ding, Q. Chen, X. Jiao, Y. Xie, J. Am. Chem. Soc. 2024, 146, 16950–16962.
- 8X. Li, J. Yu, M. Jaroniec, Chem. Soc. Rev. 2016, 45, 2603–2636.
- 9C. Gao, J. Low, R. Long, T. Kong, J. Zhu, Y. Xiong, Chem. Rev. 2020, 120, 12175–12216.
- 10Y. Luo, X. Wang, F. Gao, L. Jiang, D. Wang, H. Pan, Adv. Funct. Mater. 2024, 35, 2418427.
- 11J. Kou, C. Lu, J. Wang, Y. Chen, Z. Xu, R. S. Varma, Chem. Rev. 2017, 117, 1445–1514.
- 12K. E. Dalle, J. Warnan, J. J. Leung, B. Reuillard, I. S. Karmel, E. Reisner, Chem. Rev. 2019, 119, 2752–2875.
- 13L. Wang, W. Chen, D. Zhang, Y. Du, R. Amal, S. Qiao, J. Wu, Z. Yin, Chem. Soc. Rev. 2019, 48, 5310–5349.
- 14J. Xiong, J. Di, J. Xia, W. Zhu, H. Li, Adv. Funct. Mater. 2018, 28, 1801983.
- 15L. Chen, W. Yan, Y. Lan, Q. Liang, X. Huang, Z. Wang, Y. Zhang, J. Cao, Y. Zhang, Chem. Eng. J. 2023, 478, 147371.
- 16E. Cui, Y. Lu, X.-L. Yang, G. Dong, Y. Zhang, Y. Bi, Energy Environ. Sci. 2025, 18, 613–619.
- 17J. Yu, Q. Wang, D. O'Hare, L. Sun, Chem. Soc. Rev. 2017, 46, 5950–5974.
- 18L. Lv, Z. Yang, K. Chen, C. Wang, Y. Xiong, Adv. Energy Mate. 2019, 9, 1803358.
- 19Y. Zhao, S. Zhang, R. Shi, G. I. N. Waterhouse, J. Tang, T. Zhang, Mater. Today 2020, 34, 78–91.
- 20G. Fan, F. Li, D. G. Evans, X. Duan, Chem. Soc. Rev. 2014, 43, 7040–7066.
- 21L. Tan, S. M. Xu, Z. Wang, Y. Xu, X. Wang, X. Hao, S. Bai, C. Ning, Y. Wang, W. Zhang, Y. K. Jo, S. J. Hwang, X. Cao, X. Zheng, H. Yan, Y. Zhao, H. Duan, Y. F. Song, Angew. Chem. Int. Ed. 2019, 58, 11860–11867.
- 22S. Zhang, Y. Zhao, R. Shi, C. Zhou, G. I. N. Waterhouse, L. Z. Wu, C. H. Tung, T. Zhang, Adv. Energy Mater. 2020, 10, 1901973.
- 23Y. Bo, P. Du, H. Li, R. Liu, C. Wang, H. Liu, D. Liu, T. Kong, Z. Lu, C. Gao, Y. Xiong, Appl. Catal. B 2023, 330, 122667.
- 24X. Sun, G. Liu, T. Shen, Y. Hu, Z. Song, Z. Wu, Q. Li, L. Zheng, W. Chen, Y. F. Song, Small 2024, 20, 2310857.
- 25J. Zhang, B. Shen, Z. Hu, M. Zhen, S.-Q. Guo, F. Dong, Appl. Catal. B 2021, 296, 120376.
- 26W. Bao, Y. Tang, J. Yu, W. Yan, C. Wang, Y. Li, Z. Wang, J. Yang, L. Zhang, F. Yu, Appl. Catal. B-Environ. 2024, 346, 123706.
- 27J. Zhao, R. Shi, G. I. N. Waterhouse, T. Zhang, Nano Energy 2022, 102, 107650.
- 28M. M. Behera, C. Ciotonea, L. Olivet, L. Tidahy, S. Royer, D. Thomas, R. Cousin, G. De Weireld, S. Siffert, C. Poupin, Chem. Eng. J. 2023, 452, 139543.
- 29Y. Zhao, G. Chen, T. Bian, C. Zhou, G. I. N. Waterhouse, L. Z. Wu, C. H. Tung, L. J. Smith, D. O'Hare, T. Zhang, Adv. Mater. 2015, 27, 7824–7831.
- 30Y. Zhao, L. Zheng, R. Shi, S. Zhang, X. Bian, F. Wu, X. Cao, G. I. N. Waterhouse, T. Zhang, Adv. Energy Mate. 2020, 10, 2002199.
- 31Y. Liu, N. Wang, J. H. Pan, F. Steinbach, J. Caro, J. Am. Chem. Soc. 2014, 136, 14353–14356.
- 32J. Hu, C. Yu, C. Li, S. Lan, L. Zeng, M. Zhu, Nano Energy 2022, 101, 107583.
- 33Y. Tang, Q. Liu, L. Dong, H. B. Wu, X.-Y. Yu, Appl. Catal. B 2020, 266, 118627.
- 34H. Zeng, L. Deng, H. Zhang, C. Zhou, Z. Shi, J. Hazard. Mater. 2020, 400, 123297.
- 35F. Xu, K. Meng, B. Cheng, S. Wang, J. Xu, J. Yu, Nat. Commun. 2020, 11, 4613.
- 36F. Lei, Y. Sun, K. Liu, S. Gao, L. Liang, B. Pan, Y. Xie, J. Am. Chem. Soc. 2014, 136, 6826–6829.
- 37C. Ye, J.-X. Li, Z.-J. Li, X.-B. Li, X.-B. Fan, L.-P. Zhang, B. Chen, C.-H. Tung, L.-Z. Wu, ACS Catal. 2015, 5, 6973–6979.
- 38J. I. Khan, F. H. Isikgor, E. Ugur, W. Raja, G. T. Harrison, E. Yengel, T. D. Anthopoulos, S. De Wolf, F. Laquai, ACS Energy Lett. 2021, 6, 4155–4164.
- 39H. Tsai, R. Asadpour, J.-C. Blancon, C. C. Stoumpos, O. Durand, J. W. Strzalka, B. Chen, R. Verduzco, P. M. Ajayan, S. Tretiak, J. Even, M. A. Alam, M. G. Kanatzidis, W. Nie, A. D. Mohite, Science 2018, 360, 67–70.
- 40Y. Wang, C. Liu, Y. Ren, X. Zuo, S. E. Canton, K. Zheng, K. Lu, X. Lü, W. Yang, X. Zhang, J. Am. Chem. Soc. 2022, 144, 5335–5341.
- 41H. Liu, J. Xia, N. Zhang, H. Cheng, W. Bi, X. Zu, W. Chu, H. Wu, C. Wu, Y. Xie, Nat. Catal. 2021, 4, 202–211.
- 42J. Wu, J. Zhu, W. Fan, D. He, Q. Hu, S. Zhu, W. Yan, J. Hu, J. Zhu, Q. Chen, X. Jiao, Y. Xie, Nano Lett. 2024, 24, 696–702.
- 43J. T. Mefford, A. R. Akbashev, M. Kang, C. L. Bentley, W. E. Gent, H. D. Deng, D. H. Alsem, Y.-S. Yu, N. J. Salmon, D. A. Shapiro, P. R. Unwin, W. C. Chueh, Nature 2021, 593, 67–73.
- 44C. Dong, X. Zhang, Y. Ding, Y. Zhang, Y. Bi, Appl. Catal. B 2023, 338, 123055.
- 45L. Liu, H. Zhao, J. M. Andino, Y. Li, ACS Catal. 2012, 2, 1817–1828.
- 46E.-M. Köck, M. Kogler, T. Bielz, B. Klötzer, S. Penner, J. Phys. Chem. C 2013, 117, 17666–17673.
- 47L. Collado, A. Reynal, F. Fresno, M. Barawi, C. Escudero, V. Perez-Dieste, J. M. Coronado, D. P. Serrano, J. R. Durrant, V. A. de la Peña O'Shea, Nat. Commun. 2018, 9, 4986.
- 48C. Han, R. Zhang, Y. Ye, L. Wang, Z. Ma, F. Su, H. Xie, Y. Zhou, P. K. Wong, L. Ye, J. Mater. Chem. A 2019, 7, 9726–9735.
- 49W. Yan, Y. Zhang, Y. Bi, Angew. Chem. Int. Ed. 2024, 63, e202316459.
- 50Y. Lan, Y. Zhang, X. Huang, Y. Bi, Angew. Chem. Int. Ed. 2024, 63, e202407736.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.