Proton-Conducting, Vacancy-Rich HxIrOy Nanosheets for the Fabrication of Low-Ionomer-Dependent Anode Catalyst Layer in PEM Water Electrolyzer
Lina Wang
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 China
These authors contributed equally to this work.
Search for more papers by this authorRuofei Du
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 China
These authors contributed equally to this work.
Search for more papers by this authorZicheng Zhao
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 China
These authors contributed equally to this work.
Search for more papers by this authorMuhan Na
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 China
Search for more papers by this authorXinyi Li
Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012 China
Search for more papers by this authorXiao Zhao
Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012 China
Search for more papers by this authorXiyang Wang
Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorYimin A. Wu
Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorSubhajit Jana
Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorYongcun Zou
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 China
Search for more papers by this authorCorresponding Author
Hui Chen
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xiaoxin Zou
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorLina Wang
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 China
These authors contributed equally to this work.
Search for more papers by this authorRuofei Du
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 China
These authors contributed equally to this work.
Search for more papers by this authorZicheng Zhao
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 China
These authors contributed equally to this work.
Search for more papers by this authorMuhan Na
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 China
Search for more papers by this authorXinyi Li
Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012 China
Search for more papers by this authorXiao Zhao
Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012 China
Search for more papers by this authorXiyang Wang
Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorYimin A. Wu
Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorSubhajit Jana
Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorYongcun Zou
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 China
Search for more papers by this authorCorresponding Author
Hui Chen
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xiaoxin Zou
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
The anode catalyst layer is composed of catalytically functional IrOx and protonic conducting ionomer and largely dictates catalytic performance of proton exchange membrane water electrolyzer (PEMWE). Here, we report a new type of anode nanocatalyst that possesses both IrOx’s catalytic function and high proton conductivity that traditional anode catalysts lack and demonstrate its ability to construct high-performance, low-ionomer-dependent anode catalyst layer, the interior of which—about 85% of total catalyst layer—is free of ionomers. The proton-conducting anode nanocatalyst is prepared via protonation of layered iridate K0.5(Na0.2Ir0.8)O2 and then exfoliation to produce cation vacancy-rich, 1 nm-thick iridium oxide nanosheets (labeled as □-HxIrOy). Besides being a proton conductor, the □-HxIrOy is found to have abundant catalytic active sites for the oxygen evolution reaction due to the optimization of both edge and in-plane iridium sites by multiple cation vacancies. The dual functionality of □-HxIrOy allows the fabrication of low-iridium-loading, low-ionomer-dependent anode catalyst layer with enhanced exposure of catalytic sites and reduced electronic contact resistance, in contrast to common fully mixed catalyst/ionomer layers in PEMWE. This work represents an example of realizing the structural innovation in anode catalyst layer through the bifunctionality of anode catalyst.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
Filename | Description |
---|---|
ange202501744-sup-0001-SuppMat.docx7.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. F. Lagadec, A. Grimaud, Nat. Mater. 2020, 19, 1140–1150.
- 2A. Li, S. Kong, C. Guo, H. Ooka, K. Adachi, D. Hashizume, Q. Jiang, H. Han, J. Xiao, R. Nakamura, Nat. Catal. 2022, 5, 109–118.
- 3Y. Wang, Y. Pang, H. Xu, A. Martinez, K. S. Chen, Energy Environ. Sci. 2022, 15, 2288–2328.
- 4J. Zhang, X. Fu, S. Kwon, K. Chen, X. Liu, J. Yang, H. Sun, Y. Wang, T. Uchiyama, Y. Uchimoto, S. Li, Y. Li, X. Fan, G. Chen, F. Xia, J. Wu, Y. Li, Q. Yue, L. Qiao, D. Su, H. Zhou, W. A. Goddard, Y. Kang, Science 2025, 387, 48–55.
- 5K. Zhang, X. Liang, L. Wang, K. Sun, Y. Wang, Z. Xie, Q. Wu, X. Bai, M. S. Hamdy, H. Chen, X. Zou, Nano Res. Energy 2022, 1, e9120032.
- 6Q. Wu, Y. Wang, K. Zhang, Z. Xie, K. Sun, W. An, X. Liang, X. Zou, Mater. Chem. Front. 2023, 7, 1025–1045.
- 7J. Kibsgaard, I. Chorkendorff, Nat. Energy 2019, 4, 430–433.
- 8L. An, C. Wei, M. Lu, H. Liu, Y. Chen, G. G. Scherer, A. C. Fisher, P. Xi, Z. J. Xu, C.-H. Yan, Adv. Mater. 2021, 33, 2006328.
- 9X. Liang, Q. Wu, Q. Liu, L. Wang, M. Zhang, K. Sun, Y. Shen, H. Chen, X. Zou, Energy Lab. 2023, 1, 220013.
- 10L. Shulin, T. Dai, J. Xiaofei, Chem. Synth. 2024, 4, 70.
- 11K. Ayers, N. Danilovic, R. Ouimet, M. Carmo, B. Pivovar, M. Bornstein, Annu. Rev. Chem. Biomol. Eng. 2019, 10, 219–239.
- 12H.-S. Oh, H. N. Nong, T. Reier, M. Gliech, P. Strasser, Chem. Sci. 2015, 6, 3321–3328.
- 13S. Ye, F. Luo, Q. Zhang, P. Zhang, T. Xu, Q. Wang, D. He, L. Guo, Y. Zhang, C. He, X. Ouyang, M. Gu, J. Liu, X. Sun, Energy Environ. Sci. 2019, 12, 1000–1007.
- 14D. Liu, X. Li, S. Chen, H. Yan, C. Wang, C. Wu, Y. A. Haleem, S. Duan, J. Lu, B. Ge, P. M. Ajayan, Y. Luo, J. Jiang, L. Song, Nat. Energy 2019, 4, 512–518.
- 15K. Barbalace, Periodic Table of Elements. EnvironmentalChemistry.com; can be found under https://EnvironmentalChemistry.com/yogi/periodic/ (accessed: December 2024).
- 16S. M. Market, The metal price; can be found under https://www.metal.com/price (accessed: December 2024).
- 17H. B. Tao, H. Liu, K. Lao, Y. Pan, Y. Tao, L. Wen, N. Zheng, Nat. Nanotechnol. 2024, 19, 1074–1076.
- 18A. Li, S. Kong, K. Adachi, H. Ooka, K. Fushimi, Q. Jiang, H. Ofuchi, S. Hamamoto, M. Oura, K. Higashi, T. Kaneko, T. Uruga, N. Kawamura, D. Hashizume, R. Nakamura, Science 2024, 384, 666–670.
- 19M. R. Gerhardt, L. M. Pant, J. C. Bui, A. R. Crothers, V. M. Ehlinger, J. C. Fornaciari, J. Liu, A. Z. Weber, J. Electrochem. Soc. 2021, 168, 074503.
- 20M. Bernt, H. A. Gasteiger, J. Electrochem. Soc. 2016, 163, F3179–F3189.
- 21S. A. Berlinger, X. Peng, X. Luo, P. J. Dudenas, G. Zeng, H. Yu, D. A. Cullen, A. Z. Weber, N. Danilovic, A. Kusoglu, ACS Energy Lett. 2024, 9, 4792–4799.
- 22Q. Liu, Y. Wang, X. Liang, H. Chen, X. Zou, Mater. Chem. Front. 2025, 9, 30–44.
- 23J. Lim, D. Park, S. S. Jeon, C.-W. Roh, J. Choi, D. Yoon, M. Park, H. Jung, H. Lee, Adv. Funct. Mater. 2018, 28, 1704796.
- 24Z. Xie, H. Chen, X. Wang, Y. A. Wu, Z. Wang, S. Jana, Y. Zou, X. Zhao, X. Liang, X. Zou, Angew. Chem. Int. Ed. 2025, 64, e202415032.
- 25Z. Xie, X. Liang, Z. Kang, Y. Zou, X. Wang, A. Wu Yimin, G. King, Q. Liu, Y. Huang, X. Zhao, H. Chen, X. Zou, CCS Chem. 2025, 7, 216–228.
- 26C. Rozain, E. Mayousse, N. Guillet, P. Millet, Appl. Catal. B 2016, 182, 123–131.
- 27Y. Wang, Z. Zhao, X. Liang, X. Zhao, X. Wang, S. Jana, Y. A. Wu, Y. Zou, L. Li, H. Chen, X. Zou, Adv. Mater. 2024, 36, 2407717.
- 28Y. Wang, M. Zhang, Z. Kang, L. Shi, Y. Shen, B. Tian, Y. Zou, H. Chen, X. Zou, Nat. Commun. 2023, 14, 5119.
- 29H. Liu, X. Wang, K. Lao, L. Wen, M. Huang, J. Liu, T. Hu, B. Hu, S. Xie, S. Li, X. Fang, N. Zheng, H. B. Tao, Adv. Mater. 2024, 36, 2402780.
- 30C. Zhao, S. Yuan, X. Cheng, S. Shen, N. Zhan, R. Wu, X. Mei, Q. Wang, L. An, X. Yan, J. Zhang, Adv. Energy Mater. 2024, 14, 2401588.
- 31J. Fan, M. Chen, Z. Zhao, Z. Zhang, S. Ye, S. Xu, H. Wang, H. Li, Nat. Energy 2021, 6, 475–486.
- 32B. Li, X. Duan, D. Cheng, X. Chen, Z. Gao, W. Ren, K.-Z. Shao, H.-Y. Zang, J. Am. Chem. Soc. 2023, 145, 2243–2251.
- 33B. Li, X. Duan, Y. Cui, T. Li, X. Chen, Q. Liu, X. Liu, Y. Meng, W. Ren, L. Wang, S. Liang, H.-Y. Zang, Angew. Chem. Int. Ed. 2024, 63, e202408096.
- 34N. Agmon, Chem. Phys. Lett. 1995, 244, 456–462.
- 35K. A. Mauritz, R. B. Moore, Chem. Rev. 2004, 104, 4535–4586.
- 36A. Kraytsberg, Y. Ein-Eli, Energy Fuels 2014, 28, 7303–7330.
- 37M. R. Karim, K. Hatakeyama, T. Matsui, H. Takehira, T. Taniguchi, M. Koinuma, Y. Matsumoto, T. Akutagawa, T. Nakamura, S.-i. Noro, T. Yamada, H. Kitagawa, S. Hayami, J. Am. Chem. Soc. 2013, 135, 8097–8100.
- 38B. Shi, H. Wu, J. Shen, L. Cao, X. He, Y. Ma, Y. Li, J. Li, M. Xu, X. Mao, M. Qiu, H. Geng, P. Yang, Z. Jiang, ACS Nano 2019, 13, 10366–10375.
- 39J.-J. Shao, K. Raidongia, A. R. Koltonow, J. Huang, Nat. Commun. 2015, 6, 7602.
- 40L. Zhang, X. Liu, L. Li, D. Zhang, X. Sun, H. Yuan, J. Alloys Compd. 2018, 743, 136–140.
- 41S. Fop, R. Vivani, S. Masci, M. Casciola, A. Donnadio, Angew. Chem. Int. Ed. 2023, 62, e202218421.
- 42Y. Mao, Y. Zhang, L. Li, J. Li, H. Zeng, G. Zou, Z. Lin, J. Solid State Chem. 2020, 282, 121067.
- 43D. Gui, T. Zheng, J. Xie, Y. Cai, Y. Wang, L. Chen, J. Diwu, Z. Chai, S. Wang, Inorg. Chem. 2016, 55, 12508–12511.
- 44C. Wang, Y. Shen, X. Wang, Y. Zhang, C. Wang, Q. Wang, H. Li, S. Wang, D. Gui, ACS Appl. Mater. Interfaces 2024, 16, 22648–22656.
- 45Y. Kim, K. Ketpang, S. Jaritphun, J. S. Park, S. Shanmugam, J. Mater. Chem. A 2015, 3, 8148–8155.
- 46L. Zhu, C. Ma, D. Li, X. Shao, L. Cao, J. Yang, Adv. Funct. Mater. 2024, 34, 2313375.
- 47G. Meng, W. Sun, A. Mon, X. Wu, L. Xia, A. Han, Y. Wang, Z. Zhuang, J. Liu, D. Wang, Y. Li, Adv. Mater. 2019, 31, 1903616.
- 48L. Yang, G. Yu, X. Ai, W. Yan, H. Duan, W. Chen, X. Li, T. Wang, C. Zhang, X. Huang, J.-S. Chen, X. Zou, Nat. Commun. 2018, 9, 5236.
- 49H. Chen, L. Shi, K. Sun, K. Zhang, Q. Liu, J. Ge, X. Liang, B. Tian, Y. Huang, Z. Shi, Z. Wang, W. Zhang, M. Liu, X. Zou, ACS Catal. 2022, 12, 8658–8666.
- 50D. Weber, L. M. Schoop, D. Wurmbrand, S. Laha, F. Podjaski, V. Duppel, K. Müller, U. Starke, B. V. Lotsch, J. Mater. Chem. A 2018, 6, 21558–21566.
- 51Z. Fan, Y. Ji, Q. Shao, S. Geng, W. Zhu, Y. Liu, F. Liao, Z. Hu, Y.-C. Chang, C.-W. Pao, Y. Li, Z. Kang, M. Shao, Joule 2021, 5, 3221–3234.
- 52D. Lebedev, M. Povia, K. Waltar, P. M. Abdala, I. E. Castelli, E. Fabbri, M. V. Blanco, A. Fedorov, C. Copéret, N. Marzari, T. J. Schmidt, Chem. Mater. 2017, 29, 5182–5191.
- 53Q. Qin, H. Jang, Y. Wang, L. Zhang, Z. Li, M. G. Kim, S. Liu, X. Liu, J. Cho, Adv. Energy Mater. 2021, 11, 2003561.
- 54A. L. Strickler, D. Higgins, T. F. Jaramillo, ACS Appl. Energy Mater. 2019, 2, 5490–5498.
- 55P. E. Pearce, C. Yang, A. Iadecola, J. Rodríguez-Carvajal, G. Rousse, R. Dedryvère, A. M. Abakumov, D. Giaume, M. Deschamps, J. M. Tarascon, A. Grimaud, Chem. Mater. 2019, 31, 5845–5855.
- 56Y. Wu, W. Sun, Z. Zhou, W. Q. Zaman, M. Tariq, L. Cao, J. Yang, ACS Omega 2018, 3, 2902–2908.
- 57W. Sun, Y. Song, X.-Q. Gong, L.-m. Cao, J. Yang, ACS Appl. Mater. Interfaces 2016, 8, 820–826.
- 58L. Yang, L. Shi, H. Chen, X. Liang, B. Tian, K. Zhang, Y. Zou, X. Zou, Adv. Mater. 2023, 35, 2208539.
- 59S. Geiger, O. Kasian, M. Ledendecker, E. Pizzutilo, A. M. Mingers, W. T. Fu, O. Diaz-Morales, Z. Li, T. Oellers, L. Fruchter, A. Ludwig, K. J. J. Mayrhofer, M. T. M. Koper, S. Cherevko, Nat. Catal. 2018, 1, 508–515.
- 60I. C. Man, H.-Y. Su, F. Calle-Vallejo, H. A. Hansen, J. I. Martínez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, J. K. Nørskov, J. Rossmeisl, ChemCatChem 2011, 3, 1159–1165.
- 61S. Hao, H. Sheng, M. Liu, J. Huang, G. Zheng, F. Zhang, X. Liu, Z. Su, J. Hu, Y. Qian, L. Zhou, Y. He, B. Song, L. Lei, X. Zhang, S. Jin, Nat. Nanotechnol. 2021, 16, 1371–1377.
- 62M. Retuerto, L. Pascual, J. Torrero, M. A. Salam, Á. Tolosana-Moranchel, D. Gianolio, P. Ferrer, P. Kayser, V. Wilke, S. Stiber, V. Celorrio, M. Mokthar, D. G. Sanchez, A. S. Gago, K. A. Friedrich, M. A. Peña, J. A. Alonso, S. Rojas, Nat. Commun. 2022, 13, 7935.
- 63T. Yan, S. Chen, W. Sun, Y. Liu, L. Pan, C. Shi, X. Zhang, Z.-F. Huang, J.-J. Zou, ACS Appl. Mater. Interfaces 2023, 15, 6912–6922.
- 64J. Xu, H. Jin, T. Lu, J. Li, Y. Liu, K. Davey, Y. Zheng, S.-Z. Qiao, Sci. Adv. 2023, 9, eadh1718.
- 65J.-W. Zhao, K. Yue, H. Zhang, S.-Y. Wei, J. Zhu, D. Wang, J. Chen, V. Y. Fominski, G.-R. Li, Nat. Commun. 2024, 15, 2928.
- 66Z. Li, X. Li, M. Wang, Q. Wang, P. Wei, S. Jana, Z. Liao, J. Yu, F. Lu, T. Liu, G. Wang, Adv. Mater. 2024, 36, 2402643.
- 67J. Kim, T. Kwon, J. Lee, H. J. Lee, M. Jun, H. C. Ham, H. Ju, S. Kim, J. Y. Kim, Adv. Energy Mater. 2024, 14, 2400999.
- 68S. M. Alia, B. Rasimick, C. Ngo, K. C. Neyerlin, S. S. Kocha, S. Pylypenko, H. Xu, B. S. Pivovar, J. Electrochem. Soc. 2016, 163, F3105–F3112.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.