Multivariate Distribution Structured Anisotropic Inorganic Polymer Composite Electrolyte for Long-Cycle and High-Energy All-Solid-State Lithium Metal Batteries
Ziqiang Yang
School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601 China
Search for more papers by this authorBin Yang
School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601 China
Search for more papers by this authorSen Wang
School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601 China
Search for more papers by this authorJiasheng Qian
School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601 China
Search for more papers by this authorCorresponding Author
Zhiguo Hou
School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xiaona Li
Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, 315200 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorZiqiang Yang
School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601 China
Search for more papers by this authorBin Yang
School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601 China
Search for more papers by this authorSen Wang
School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601 China
Search for more papers by this authorJiasheng Qian
School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601 China
Search for more papers by this authorCorresponding Author
Zhiguo Hou
School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xiaona Li
Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, 315200 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Solid polymer electrolytes are promising candidates for solid-state Li metal batteries owing to their favorable rheological properties and interfacial compatibility with cathodes and Li anodes. However, their limited ionic conductivity and low modulus lead to inferior electrochemical performance and dendrite growth. Herein, we developed a composite solid-state electrolyte comprising vermiculite sheets and a poly(vinylidene fluoride) (PVDF) matrix with multivariate distribution and an anisotropic structure. Within this assembly, some vermiculite sheets were suspended in the PVDF matrix to facilitate Li salt dissociation and Li+ transport, while others were tiled on the electrolyte surface, generating a dense, high-modulus Li2SiO3-rich solid electrolyte interphase via in situ electrochemical reduction, which further improved interfacial kinetics and suppressed dendrite growth. As a result, a high conductivity of 1.38 mS cm−1 was achieved at room temperature, and the Li||Li cells displayed robust stability over 3000 h. The LiNi0.6Co0.2Mn0.2O2||Li full cells delivered a specific capacity of 172 mAh g−1 at 0.2 C and 86% capacity retention after 500 cycles at 0.5 C. Additionally, practical cycle performance at a high loading (4.4 mAh cm−2) was achieved in pouch cells. Overall, multivariate distribution and anisotropic structuring offers a novel perspective for the preparation of high-performance solid-state electrolytes.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
ange202423227-sup-0001-SuppMat.docx4.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Manthiram, X. Yu, S. Wang, Nat. Rev. Mater. 2017, 2, 16103.
- 2C. Sun, J. Liu, Y. Gong, D. P. Wilkinson, J. Zhang, Nano Energy 2017, 33, 363–386.
- 3Z. Gao, H. Sun, L. Fu, F. Ye, Y. Zhang, W. Luo, Y. Huang, Adv. Mater. 2018, 30, 1705702.
- 4X. Li, J. Liang, X. Yang, K. R. Adair, C. Wang, F. Zhao, X. Sun, Energy Environ. Sci. 2020, 13, 1429–1461.
- 5Q. Zhao, S. Sanjuna, Z. Chen-Zi, L. A. Archer, Nat. Rev. Mater. 2020, 5, 229–252.
- 6A. Banerjee, X. Wang, C. Fang, E. A. Wu, Y. S. Meng, Chem. Rev. 2020, 120, 6878–6933.
- 7X.-B. Cheng, C.-Z. Zhao, Y.-X. Yao, H. Liu, Q. Zhang, Chem 2019, 5, 74–96.
- 8L. Xu, S. Tang, Y. Cheng, K. Wang, J. Liang, C. Liu, Y. Cao, F. Wei, L. Mai, Joule 2018, 2, 1991–2015.
- 9H. Wan, Z. Wang, W. Zhang, X. He, C. Wang, Nature 2023, 623, 739–744.
- 10W. Ping, C. Wang, R. Wang, Q. Dong, Z. Lin, A. H. Brozena, J. Dai, J. Luo, L. Hu, Sci. Adv. 2020, 6, eabc8641.
- 11X. Ji, S. Hou, P. Wang, X. He, N. Piao, J. Chen, X. Fan, C. Wang, Adv. Mater. 2020, 32, 2002741.
- 12M. Armand, Solid State Ionics 1983, 9-10, 745–754.
- 13F. Wu, K. Zhang, Y. Liu, H. Gao, Y. Bai, X. Wang, C. Wu, Energy Storage Mater. 2020, 33, 26–54.
- 14G. Xi, M. Xiao, S. Wang, D. Han, Y. Li, Y. Meng, Adv. Funct. Mater. 2021, 31, 2007598.
- 15Q. Zhou, J. Ma, S. Dong, X. Li, G. Cui, Adv. Mater. 2019, 31, 1902029.
- 16Q. Wu, M. Fang, S. Jiao, S. Li, S. Zhang, Nat. Commun. 2023, 14, 6296.
- 17Y. Liu, X. An, K. Yang, J. Ma, J. Mi, D. Zhang, X. Cheng, Y. Li, Y. Ma, M. Liu, F. Kang, B. He, Energy Environ. Sci. 2024, 17, 344–353.
- 18Y. Zhang, W. Zhang, J. Xia, C. Xiong, G. Li, X. Li, P. Sun, J. Shi, B. Tong, Z. Cai, Y. Dong, Angew. Chem. Int. Ed 2023, 62, e202314273.
- 19J.-F. Liu, Z.-Y. Wu, F. J. Stadler, Y.-F. Huang, Angew. Chem. Int. Ed. 2023, 62, e202300243.
- 20M. A. Ratner, D. F. Shriver, Chem. Rev. 1988, 88, 109–124.
- 21Z. Gadjourova, Y. G. Andreev, D. P. Tunstall, P. G. Bruce, Nature 2001, 412, 520–523.
- 22V. Bocharova, A. P. Sokolov, Macromolecules 2020, 53, 4141–4157.
- 23X. Zhang, J. Han, X. Niu, C. Xin, C. Xue, S. Wang, Y. Shen, Z. Zhang, L. Li, C. Nan, Batteries Supercaps 2020, 3, 876–883.
- 24Q. Liu, G. Yang, X. Li, S. Zhang, R. Chen, X. Wang, Y. Cao, Z. Wang, L. Chen, Energy Storage Mater. 2022, 51, 443–452.
- 25W. Liu, C. Yi, L. Li, S. Liu, Q. Gui, D. Ba, Y. Li, D. Peng, J. Liu, Angew. Chem. Int. Ed. 2021, 60, 12931–12940.
- 26Y. F. Huang, T. Gu, G. Rui, P. Shi, W. Fu, L. Chen, X. Liu, J. Zeng, B. Kang, Z. Yan, F. J. Stadler, L. Zhu, F. Kang, Y. B He, Energy Environ. Sci. 2021, 14, 6021–6029.
- 27W. Yang, Y. Liu, X. Sun, Z. He, P. He, H. Zhou, Angew. Chem. Int. Ed. 2024, 63, e202401428.
- 28H. Duan, Y. X. Yin, Y. Shi, P. Wang, X. Zhang, C. Yang, J. Shi, R. Wen, Y. Guo, L. Wan, J. Am. Chem. Soc. 2018, 140, 82–85.
- 29S. Xia, B. Yang, H. Zhang, J. Yang, W. Liu, S. Zheng, Adv. Funct. Mater. 2021, 31, 2101168.
- 30L.-Z. Fan, H. He, C.-W. Nan, Nat. Rev. Mater. 2021, 6, 1003–1019.
- 31Q. Zhou, X. Yang, X. Xiong, Q. Zhang, B. Peng, Y. Chen, Z. Wang, L. Fu, Y. Wu, Adv. Energy Mater. 2022, 12, 2201991.
- 32L. Chen, Y. Li, S.-P. Li, L.-Z. Fan, C.-W. Nan, J. B Goodenough, Nano Energy 2018, 46, 176–184.
- 33X. Zhang, T. Liu, S. Zhang, X. Huang, B. Xu, Y. Lin, B. Xu, L. Li, C. W. Nan, Y. Shen, J. Am. Chem. Soc. 2017, 139, 13779–13785.
- 34P. Shi, J. Ma, M. Liu, S. Guo, Y. Huang, S. Wang, L. Zhang, L. Chen, K. Yang, X. Liu, Y. Li, X. An, D. Zhang, X. Cheng, Q. Li, W. Lv, G. Zhong, Y. B. He, F. Kang, Nat. Nanotechnol. 2023, 18, 602–610.
- 35J. Zhang, Y. Zeng, Q. Li, Z. Tang, D. Sun, D. Huang, L. Zhao, Y. Tang, H. Wang, Energy Storage Mater. 2023, 54, 440–449.
- 36S. Liu, W. Liu, D. Ba, Y. Zhao, Y. Ye, Y. Li, J. Liu, Adv. Mater. 2023, 35, 2110423.
- 37Z. Li, J. Fu, X. Zhou, S. Gui, L. Wei, H. Yang, H. Li, X. Guo, Adv. Sci. 2023, 10, 2201718.
- 38G. Feng, Q. Y. Ma, D. Luo, T. Yang, Y. Nie, Z. Zheng, L. Yang, S. Li, Q. Li, M. Jin, X. Wang, Z. Chen, Angew. Chem. Int. Ed. 2024¸ n/a, e202413306.
- 39K. Yang, L. Chen, J. Ma, C. Lai, Y. Huang, J. Mi, J. Biao, D. Zhang, P. Shi, H. Xia, G. Zhong, F. Kang, Y. B He, Angew. Chem. Int. Ed. 2021, 60, 24668–24675.
- 40D. Lei, Y. B. He, H. Huang, Y. Yuan, G. Zhong, Q. Zhao, X. Hao, D. Zhang, C. Lai, S. Zhang, J. Ma, Y. Wei, Q. Yu, W. Lv, Y. Yu, B. Li, Q. Yang, Y. Yang, J. Lu, F. Kang, Nat. Commun. 2019, 10, 4244.
- 41R. C. Agrawal, G. P. Pandey, J. Phys. D: Appl. Phys. 2008, 41, 223001.
- 42H. Huo, J. Janek, Natl. Sci. Rev. 2023, 10.
- 43Z. Huang, J. C. Lai, X. Kong, I. Rajkovic, X. Xiao, H. Celik, H. Yan, H. Gong, P. E. Rudnicki, Y. Lin, Y. Ye, Y. Li, Y. Chen, X. Gao, Y. Jiang, S. Choudhury, J. Qin, J. B. H. Tok, Y. Cui, Z. Bao, Matter 2023, 6, 445–459.
- 44S. Guo, S. Tan, J. Ma, L. Chen, K. Yang, Q. Zhu, Y. Ma, P. Shi, Y. Wei, X. An, Q. Ren, Y. uang, Y. Zhu, Y. Cheng, L.v Wei, T. Hou, M. Liu, Y. B. He, Q. H. Yang, F. Kang, Energy Environ. Sci. 2024, 17, 3797–3806.
- 45K. Liu, H. Cheng, Z. Wang, Y. Zhao, Y. Lv, L. Shi, X. Cai, Z. Cheng, H. Zhang, S. Yuan, Adv. Energy Mater. 2024, 14, 2303940.
- 46D. Zhang, Y. Liu, Z. Sun, Z. Liu, X. Xu, L. Xi, S. Ji, M. Zhu, J. Liu, Angew. Chem. Int. Ed. 62, e202310006 2023.
- 47Y. Cheng, Z. Cai, J. Xu, Z. Sun, X. Wu, J. Han, Y. H. Wang, M. S. Wang, Angew. Chem. Int. Ed. 2024, 63, e202400477.
- 48X. D. Zhu, C. Han, J. Zhang, W. Mi, Y. Qin, J. Gao, J. Wu, J. J. Zou, X. Yang, Y. C. Zhang, EcoMat 2023, 5, e12291.
- 49Y. Chen, C. Dong, L. Chen, C. Fu, Y. Zeng, Q. Wang, Y. Cao, Z. Chen, EcoMat 2023, 5, e12393.
- 50J. Xu, H. Tang, S. Cao, X. Chen, Z. Chen, Y. Ma, Y. Zhang, J. Chen, X. Lu, C. S. Lee, EcoMat 2023, 5, e12329.
- 51K. Cao, Q. Ma, F. Tietz, B. B. Xu, M. Yan, Y. Jiang, Sci. Bull. 2021, 66, 179–186.
- 52Y. Huang, X. Zhang, L. Ji, L. Wang, B. B. Xu, M. W. Shahzad, Y. Tang, Y. Zhu, M. Yan, G. Sun, Energy Stor. Mater. 2023, 58, 1–8.
- 53H. Huang, Y. Xia, Y. Hao, H. Li, C. Wang, T. Shi, X. Lu, M. W. Shahzad, B. B. Xu, Y. Jiang, Adv. Funct. Mater. 2023, 33, 2305109.
- 54Z. Jiang, S. Wang, X. Chen, W. Yang, X. Yao, X. Hu, Q. Han, H. Wang, Adv. Mater. 2020, 32, 1906221.
- 55Q. Zhao, X. Liu, S. Stalin, K. Khan, L. A. Archer, Nat. Energy 2019, 4, 365–373.
- 56J. Wu, Z. Rao, Z. Cheng, L. Yuan, Z. Li, H. Y. Ultrathin, Adv. Energy Mater. 2019, 9, 1902767.
- 57C. Wang, R. Yu, H. Duan, Q. Lu, Q. Li, K. R. Adair, D. Bao, Y. Liu, R. Yang, J. Wang, S. Zhao, H. Huang, X. Sun, ACS Energy Lett. 2022, 7, 410–416.
- 58Z. Bi, S. Mu, N. Zhao, W. Sun, W. Huang, X. Guo, Energy Storage Mater. 2021, 35, 512–519.
- 59S. J. Yang, H. Yuan, N. Yao, J. K. Hu, X. L. Wang, R. Wen, J. Liu, J. Q Huang, Adv. Mater. 2024, 36, 2405086.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.