Breaking Boundaries: Giant Ultraviolet Birefringence in Dimension-Reduced Zn-Based Crystals
Yang Li
Department of Chemistry, Sogang University, Seoul, 04107 Republic of Korea
Search for more papers by this authorCorresponding Author
Prof. Kang Min Ok
Department of Chemistry, Sogang University, Seoul, 04107 Republic of Korea
Search for more papers by this authorYang Li
Department of Chemistry, Sogang University, Seoul, 04107 Republic of Korea
Search for more papers by this authorCorresponding Author
Prof. Kang Min Ok
Department of Chemistry, Sogang University, Seoul, 04107 Republic of Korea
Search for more papers by this authorAbstract
Birefringent crystals have essential applications in optical communication areas. Low-dimensional structures with inherited structural anisotropy are potential systems for investigating birefringent materials with large birefringence. In this work, the zero-dimensional (0D) [(p-C5H5NO)2ZnCl2] (1) and [p-C5H6NO]2[ZnCl4] (2) were obtained by introducing the π-conjugated p-C5H5NO (4HP) into the three-dimensional (3D) ZnCl2. Remarkably, 1 exhibits a giant birefringence of 0.482@546 nm, which is the largest among Zn-based ultraviolet (UV) compounds and 160 times that of ZnCl2. According to structural and theoretical calculation analyses, the large optical polarizability, high spatial density, ideal distribution of the [(4HP)2ZnCl2]0 cluster, and the low dimension of 1 result in the dramatically increased birefringence compared to ZnCl2. This work will provide a valid route for accelerating the design and synthesis of compounds with excellent birefringence in low-dimensional systems.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202409336-sup-0001-misc_information.pdf1.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, A. J. Ouderkirk, Science. 2000, 287, 2451–2456;
- 1bL. H. Nicholls, F. J. Rodríguez-Fortuño, M. E. Nasir, R. M. Córdova-Castro, N. Olivier, G. A. Wurtz, A. V. Zayats, Nat. Photonics. 2017, 11, 628–633;
- 1cA. Tudi, S. Han, Z. Yang, S. Pan, Coord. Chem. Rev. 2022, 459, 214380;
- 1dQ. Chen, C. Hu, M. Zhang, J. Mao, Chem. Sci. 2023, 14, 14302–14307;
- 1eZ. Bai, K. M. Ok, Angew. Chem. Int. Ed. 2024, 63, e202315311.
- 2
- 2aM. J. Dodge, Appl. Opt. 1984, 23, 1980;
- 2bG. Zhou, J. Xu, X. Chen, H. Zhong, S. Wang, K. Xu, P. Deng, F. Gan, J. Cryst. Growth. 1998, 191, 517–519;
- 2cG. Ghosh, Opt. Commun. 1999, 163, 95–102;
- 2dD. E. Zelmon, D. L. Small, D. Jundt, J. Opt. Soc. Am. B. 1997, 14, 3319;
- 2eJ. R. DeVore, J. Opt. Soc. Am. 1951, 41, 416;
- 2fL. G. DeShazer, Polariz. Anal. Meas. IV. 2002, 4481, 10.
- 3
- 3aL. Qi, X. Jiang, K. Duanmu, C. Wu, Z. Lin, Z. Huang, M. G. Humphrey, C. Zhang, J. Am. Chem. Soc. 2024, 146, 9975–9983;
- 3bX. Zhang, D. Cao, D. Yang, Y. Wang, K. Wu, M. H. Lee, B. Zhang, ACS Materials Lett. 2022, 4, 572–576;
- 3cY. Li, X. Chen, K. M. Ok, Chem. Commun. 2022, 58, 8770–8773.
- 4
- 4aJ. Guo, A. Tudi, S. Han, Z. Yang, S. Pan, Angew. Chem. Int. Ed. 2021, 60, 3540–3544;
- 4bX. Dong, H. Huang, L. Huang, Y. Zhou, B. Zhang, H. Zeng, Z. Lin, G. Zou, Angew. Chem. Int. Ed. 2024, 63, e202318976;
- 4cM. Liang, Y. Zhang, E. Izvarin, M. J. Waters, J. M. Rondinelli, P. S. Halasyamani, Chem. Mater. 2024, 36, 2113–2123.
- 5
- 5aM. Zhang, W. Yao, S. Pei, B. Liu, X. Jiang, G. Guo, Chem. Sci. 2024, 15, 6891–6896;
- 5bC. Li, X. Tian, Z. Gao, Q. Wu, P. Zhao, Y. Sun, C. Zhang, S. Zhang, D. Cui, X. Tao, Cryst. Growth Des. 2018, 18, 3376–3384;
- 5cP. Li, C. Hu, Y. Li, J. Mao, F. Kong, J. Am. Chem. Soc. 2024, 146, 7868–7874.
- 6
- 6aH. Yu, W. Zhang, P. S. Halasyamani, Cryst. Growth Des. 2016, 16, 1081–1087;
- 6bW. Zeng, Y. Tian, X. Dong, L. Huang, H. Zeng, Z. Lin, G. Zou, Chem. Mater. 2024, 36, 2138–2146;
- 6cZ. Chen, Z. Zhang, R. Wu, X. Dong, Y. Shi, Q. Jing, J. Mater. Sci. 2018, 53, 3483–3492.
- 7
- 7aD. Lin, M. Luo, C. Lin, F. Xu, N. Ye, J. Am. Chem. Soc. 2019, 141, 3390–3394;
- 7bJ. Lu, Y. Lian, L. Xiong, Q. Wu, M. Zhao, K. Shi, L. Chen, L. Wu, J. Am. Chem. Soc. 2019, 141, 16151–16159;
- 7cJ. Lu, X. Liu, M. Zhao, X. B. Deng, K. X. Shi, Q. R. Wu, L. Chen, L. Wu, J. Am. Chem. Soc. 2021, 143, 3647–3654;
- 7dY. Li, K. M. Ok, Chem. Sci. 2024, 15, 10193–10199.
- 8
- 8aX. Liu, Y. Yang, M. Li, L. Chen, L. Wu, Chem. Soc. Rev. 2023, 52, 8699–8720;
- 8bJ. Zhang, C. Wu, H. Shi, C. Xie, Z. Yang, S. Pan, Matter. 2023, 6, 1188–1202;
- 8cG. Han, B. H. Lei, Z. Yang, Y. Wang, S. Pan, Angew. Chem. Int. Ed. 2018, 57, 9828–9832;
- 8dW. Jin, W. Zhang, A. Tudi, L. Wang, X. Zhou, Z. Yang, S. Pan, Adv. Sci. 2021, 8, 2003594.
- 9
- 9aJ. Wang, M. Zhu, Y. Chu, J. Tian, L. Liu, B. Zhang, P. S. Halasyamani, Small. 2023, 20, 2308884;
- 9bR. D. Shannon, R. C. Shannon, O. Medenbach, R. X. Fischer, J. Phys. Chem. Ref. Data. 2002, 31, 931–970.
- 10
- 10aL. Ren, L. Cheng, X. Zhou, J. Ren, L. Cao, L. Huang, X. Dong, Y. Zhou, D. Gao, G. Zou, Inorg. Chem. Front. 2023, 10, 5602–5610;
- 10bG. Yang, Mol. Syst. Des. Eng. 2020, 5, 985–995;
- 10cQ. Xu, W. Huang, H. Wang, Y. Li, Y. Zhou, L. Hou, S. Zhao, J. Luo, Small. 2023, 19, 2304333;
- 10dZ. Xia, K. R. Poeppelmeier, Acc. Chem. Res. 2017, 50, 1222–1230.
- 11
- 11aS. Guo, Y. Chi, H. Xue, Angew. Chem. Int. Ed. 2018, 57, 11540–11543;
- 11bX. Chen, B. Zhang, F. Zhang, Y. Wang, M. Zhang, Z. Yang, K. R. Poeppelmeier, S. Pan, J. Am. Chem. Soc. 2018, 140, 16311–16319;
- 11cF. Zhang, X. Chen, M. Zhang, W. Jin, S. Han, Z. Yang, S. Pan, Light-Sci. Appl. 2022, 11, 252;
- 11dG. Li, Z. Yang, X. Hou, S. Pan, Angew. Chem. Int. Ed. 2023, 62, e202303711;
- 11eG. Zou, C. Lin, H. Jo, G. Nam, T.-S. You, K. M. Ok, Angew. Chem. Int. Ed. 2016, 55, 12078–12082.
- 12
- 12aT. T. Tran, J. He, J. M. Rondinelli, P. S. Halasyamani, J. Am. Chem. Soc. 2015, 137, 10504–10507;
- 12bZ. Chen, H. Zeng, D. Chu, F. Zhang, M. Cheng, Z. Yang, S. Pan, Sci. China Mater. 2022, 65, 2585–2590;
- 12cJ. Kee, K. M. Ok, Angew. Chem. Int. Ed. 2021, 60, 20656–20660;
- 12dQ. Wu, X. Meng, C. Zhong, X. Chen, J. Qin, J. Am. Chem. Soc. 2014, 136, 5683–5686.
- 13
- 13aZ. Xiong, J. He, B. Hu, P. Shan, Z. Wang, R. Su, C. He, X. Yang, X. Long, ACS Appl. Mater. Interfaces. 2020, 12, 42942–42948;
- 13bM. Yan, R. L. Tang, W. D. Yao, W. Liu, S. P. Guo, Chem. Sci. 2024, 15, 2883–2888;
- 13cG. Shi, Y. Wang, F. Zhang, B. Zhang, Z. Yang, X. Hou, S. Pan, K. R. Poeppelmeier, J. Am. Chem. Soc. 2017, 139, 10645–10648;
- 13dJ. Lu, J. N. Yue, L. Xiong, W. K. Zhang, L. Chen, L. M. Wu, J. Am. Chem. Soc. 2020, 143, 3647–3654.
- 14
- 14aM. Mutailipu, M. Zhang, B. Zhang, L. Wang, Z. Yang, X. Zhou, S. Pan, Angew. Chem. Int. Ed. 2018, 57, 6095–6099;
- 14bQ. Huang, L. Liu, X. Wang, R. Li, C. Chen, Inorg. Chem. 2016, 55, 12496–12499;
- 14cJ. Zhou, Y. Liu, H. Wu, H. Yu, Z. Lin, Z. Hu, J. Wang, Y. Wu, Angew. Chem. Int. Ed. 2020, 59, 19006–19010.
- 15
- 15aS. Zhao, J. Zhang, S. Q. Zhang, Z. Sun, Z. Lin, Y. Wu, M. Hong, J. Luo, Inorg. Chem. 2014, 53, 2521–2527;
- 15bG. Yang, P. Gong, Z. Lin, N. Ye, Chem. Mater. 2016, 28, 9122–9131;
- 15cV. Jo, M. K. Kim, D. W. Lee, L. W. Shim, K. M. Ok, Inorg. Chem. 2010, 49, 2990–2995;
- 15dP. Chen, J. Li, F. Duan, J. Yu, R. Xu, R. P. Sharma, Inorg. Chem. 2007, 46, 6683–6687;
- 15eM. H. Choi, S. H. Kim, H. Y. Chang, P. S. Halasyamani, K. M. Ok, Inorg. Chem. 2009, 48, 8376–8382.
- 16
- 16aR. Masse, Y. Le Fur, Z. Kristallogr. New Cryst. Struct. 1998, 213, 114;
- 16bC. Gu, S. Gao, L. Huo, J. Zhao, J. Nat. Sci. Heilongjiang Univ. 2006, 23, 117–119.
- 17
- 17aM. Mutailipu, X. Su, M. Zhang, Z. Yang, S. Pan, Inorg. Chem. Front. 2017, 4, 281–288;
- 17bR. A. Nyquist, R. O. Kagel, INFRARED SPECTRA OF INORGANIC COMPOUNDS, Elsevier 1971.
- 18Deposition numbers 2339182 (for 1), and 2353731 (for 2) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 19
- 19aSAINT, Version 7.60 A, Bruker Analytical X-ray Instruments, Inc., Madison, WI 2008;
- 19bO. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339–341;
- 19cA. L. Spek, J. Appl. Crystallogr. 2003, 36, 7–13.
- 20S. Landi, I. R. Segundo, E. Freitas, M. Vasilevskiy, J. Carneiro, C. J. Tavares, Solid State Commun. 2022, 341, 114573.
- 21
- 21aS. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, M. C. Payne, Z. Kristallogr. 2005, 220, 567–570;
- 21bL. J. Sham, M. Schlüter, Phys. Rev. Lett. 1983, 51, 1888–1891;
- 21cJ. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865–3868;
- 21dM. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT 2009;
- 21eT. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580–592;
- 21fT. D. Kühne, M. Iannuzzi, M. Del Ben, V. V. Rybkin, P. Seewald, F. Stein, T. Laino, R. Z. Khaliullin, O. Schütt, F. Schiffmann, D. Golze, J. Wilhelm, S. Chulkov, M. H. Bani-Hashemian, V. Weber, U. Borštnik, M. Taillefumier, A. S. Jakobovits, A. Lazzaro, H. Pabst, T. Müller, R. Schade, M. Guidon, S. Andermatt, N. Holmberg, G. K. Schenter, A. Hehn, A. Bussy, F. Belleflamme, G. Tabacchi, A. Glöß, M. Lass, I. Bethune, C. J. Mundy, C. Plessl, M. Watkins, J. VandeVondele, M. Krack, J. Hutter, J. Chem. Phys. 2020, 152, DOI 10.1063/5.0007045.
- 22Y. Zhou, X. Zhang, Z. Xiong, X. Long, Y. Li, Y. Chen, X. Chen, S. Zhao, Z. Lin, J. Luo, J. Phys. Chem. Lett. 2021, 12, 8280–8284.
- 23Q. Huang, L. Liu, X. Wang, R. Li, C. Chen, Inorg. Chem. 2016, 55, 12496–12499.
- 24Z. Yu, Q. Ding, Y. Jiang, W. Huang, C. Yang, S. Zhao, J. Luo, Inorg. Chem. Front. 2024, 11, 107–113.
- 25H. Song, S. Zhang, Y. Li, W. Liu, Z. Lin, J. Yao, G. Zhang, Solid State Sci. 2019, 95, 105940.
- 26Z. Xiong, J. He, B. Hu, P. Shan, Z. Wang, R. Su, C. He, X. Yang, X. Long, ACS Appl. Mater. Interfaces. 2020, 12, 42942–42948.
- 27J. Zhang, X. Zhang, Y. Wang, K. Wu, B. Zhang, Inorg. Chem. 2022, 61, 18622–18628.
- 28H. Yu, W. Zhang, J. Young, J. M. Rondinelli, P. S. Halasyamani, Adv. Mater. 2015, 27, 7380–7385.
- 29Y. Tang, R. Wang, X. Dong, M. Yang, L. Huang, H. Zeng, G. Zou, D. Xu, Z. Lin, Inorg. Chem. 2022, 61, 6720–6724.
- 30J. Chen, P. Yang, H. Yu, Z. Hu, J. Wang, Y. Wu, H. Wu, ACS Materials Lett. 2023, 5, 1665–1671.
- 31H. Yu, H. Wu, S. Pan, Z. Yang, X. Hou, X. Su, Q. Jing, K. R. Poeppelmeier, J. M. Rondinelli, J. Am. Chem. Soc. 2014, 136, 1264–1267.
- 32X. Pan, H. Wu, S. Cheng, Z. Wang, Inorg. Chem. Front. 2020, 7, 101–107.
- 33T. Yu, J. Wan, J. Yang, X. Luo, M. Xie, L. Liu, H. Liu, Inorg. Chem. 2024, 63, 5753–5760.
- 34M. Mutailipu, F. Li, C. Jin, Z. Yang, K. R. Poeppelmeier, S. Pan, Angew. Chem. Int. Ed. 2022, 61, e202202096.
- 35M. Y. Ran, S. H. Zhou, B. Li, W. Wei, X. T. Wu, H. Lin, Q. L. Zhu, Chem. Mater. 2022, 34, 3853–3861.
- 36G. Zhou, J. Xu, X. Chen, H. Zhong, S. Wang, K. Xu, P. Deng, F. Gan, J. Cryst. Growth. 1998, 191, 517–519.
- 37J. Han, K. Liu, L. Chen, F. Li, Z. Yang, F. Zhang, S. Pan, M. Mutailipu, Chem. Eur. J. 2023, 29, e202203000.
- 38X. Liu, L. Kang, P. Gong, Z. Lin, Angew. Chem. Int. Ed. 2021, 60, 13574–13578.
- 39F. You, P. Gong, F. Liang, X. Jiang, H. Tu, Y. Zhao, Z. Hu, Z. Lin, CrystEngComm. 2019, 21, 2485–2489.
- 40G. Ghosh, Opt. Commun. 1999, 163, 95–102.
- 41D. Wang, F. Liang, X. Zhang, Z. Hu, Y. Wu, Cryst. Growth Des. 2021, 21, 2348–2354.
- 42M. Gai, Y. Wang, T. Tong, Z. Yang, S. Pan, Inorg. Chem. 2020, 59, 4172–4175.
- 43K. Kang, X. Meng, F. Liang, J. Tang, T. Zeng, W. Yin, Z. Lin, M. Xia, CrystEngComm. 2020, 22, 2128–2131.
- 44X. Liu, P. Gong, Z. Lin, Inorg. Chem. 2021, 60, 10890–10894.
- 45D. Wang, X. Zhang, F. Liang, Z. Hu, Y. Wu, Dalton Trans. 2021, 50, 5617–5623.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.