Asynchronous Ring Opening of Cyclic Carbonate and Glycidyl Ether Induced Phase Evolution Towards Heat-Free and Rapid-Bonding Superior Epoxy Adhesive
Peixin Niu
College of Chemistry and Pingyuan Laboratory, Zhengzhou Key Laboratory of Elastic Sealing Materials, Zhengzhou University, Zhengzhou, 450001 China
These authors contributed equal to this work.
Search for more papers by this authorChuanlong Li
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu, 610065 China
These authors contributed equal to this work.
Search for more papers by this authorJun Zhu
School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorYifang Zhao
College of Chemistry and Pingyuan Laboratory, Zhengzhou Key Laboratory of Elastic Sealing Materials, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorZixian Li
College of Chemistry and Pingyuan Laboratory, Zhengzhou Key Laboratory of Elastic Sealing Materials, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorAiling Sun
College of Chemistry and Pingyuan Laboratory, Zhengzhou Key Laboratory of Elastic Sealing Materials, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorProf. Liuhe Wei
College of Chemistry and Pingyuan Laboratory, Zhengzhou Key Laboratory of Elastic Sealing Materials, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorCorresponding Author
Dr. Kai Wu
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorCorresponding Author
Dr. Yuhan Li
College of Chemistry and Pingyuan Laboratory, Zhengzhou Key Laboratory of Elastic Sealing Materials, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorPeixin Niu
College of Chemistry and Pingyuan Laboratory, Zhengzhou Key Laboratory of Elastic Sealing Materials, Zhengzhou University, Zhengzhou, 450001 China
These authors contributed equal to this work.
Search for more papers by this authorChuanlong Li
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu, 610065 China
These authors contributed equal to this work.
Search for more papers by this authorJun Zhu
School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorYifang Zhao
College of Chemistry and Pingyuan Laboratory, Zhengzhou Key Laboratory of Elastic Sealing Materials, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorZixian Li
College of Chemistry and Pingyuan Laboratory, Zhengzhou Key Laboratory of Elastic Sealing Materials, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorAiling Sun
College of Chemistry and Pingyuan Laboratory, Zhengzhou Key Laboratory of Elastic Sealing Materials, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorProf. Liuhe Wei
College of Chemistry and Pingyuan Laboratory, Zhengzhou Key Laboratory of Elastic Sealing Materials, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorCorresponding Author
Dr. Kai Wu
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorCorresponding Author
Dr. Yuhan Li
College of Chemistry and Pingyuan Laboratory, Zhengzhou Key Laboratory of Elastic Sealing Materials, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorAbstract
Structural adhesives that do not require heating are in high demand in the automotive and electronics industries. However, it remains a challenge to develop robust adhesives that rapidly achieve super adhesion near ambient temperature. Herein, a room-temperature curable, fast-bonding, and super strong epoxy-based structural adhesive was designed from the perspective of cross-scale structure, which lies in threefold pivotal aspects: (i) high branching topology of glycerol carbonate-capped polyurethane (PUGC) increases the kinetics of the ring-opening reaction, contributing to fast crosslinking and the formation of abundant urethane and hydroxyl moieties; (ii) asynchronous crosslinking of epoxy and PUGC synergistically induces phase separation of PUGC within the epoxy resin and the resulting PUGC domains surrounded by interpenetrated shell serves to efficiently toughen the matrix; (iii) abundant dynamic hydrogen bonds including urethane and hydroxyl moieties, along with the elastomeric PUGC domains, dissipate energy of shearing force. As a result, the adhesive strength rapidly grows to 16 MPa within 4 hours, leveling off to 21 MPa after 7 hours, substantially outperforming commercial room-temperature curable epoxy adhesives. The results of this study could advance the field of high-performance adhesives and provide valuable insights into designing materials for efficient curing at room temperature.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202408840-sup-0001-misc_information.pdf2.4 MB | Supporting Information |
ange202408840-sup-0001-Video_S1.mp44.4 MB | Supporting Information |
ange202408840-sup-0001-Video_S2.mp44.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aL. Vertuccio, L. Guadagno, G. Spinelli, S. Russo, G. Iannuzzo, Composites Part B 2017, 129, 1–10;
- 1bK. Schmidt, A. Zimmermann, Additive Manufacturing 2020, 34, 101262;
- 1cJ.-J. Huang, Q. Su, Y.-M. Cheng, B. Liu, T. Liu, Constr. Build. Mater. 2019, 208, 710–722;
- 1dT. Wei, R. Zhao, L. Fang, Z. Li, M. Yang, Z. Zhan, U. K. Cheang, C. Hu, Adv. Funct. Mater. 2023, 2311908;
- 1eC. J. Higginson, K. G. Malollari, Y. Xu, A. V. Kelleghan, N. G. Ricapito, P. B. Messersmith, Angew. Chem. Int. Ed. 2019, 58, 12271–12279;
- 1fS. C. Gauci, K. Ehrmann, M. Gernhardt, B. Tuten, E. Blasco, H. Frisch, V. Jayalatharachchi, J. P. Blinco, H. A. Houck, C. Barner-Kowollik, Adv. Mater. 2023, 35, 2300151.
- 2
- 2aP. Tan, H. Wang, F. Xiao, X. Lu, W. Shang, X. Deng, H. Song, Z. Xu, J. Cao, T. Gan, B. Wang, X. Zhou, Nat. Commun. 2022, 13, 358;
- 2bQ. Chen, H. Guo, K. Avery, X. Su, H. Kang, Eng. Fract. Mech. 2017, 172, 73–89;
- 2cJ. Sun, S. Lei, Y. Bai, K. Lyu, R. Cheng, H. Hao, F. Liu, Petroleum Exploration and Development 2023, 50, 202–209;
- 2dG. V. Strand, A. B. Tveit, N. R. Gjerdet, Cem. Concr. Res. 1999, 29, 645–650;
- 2eX.-Y. Miao, X. Chen, Compos. Struct. 2023, 308, 116680;
- 2fM. Savvilotidou, A. P. Vassilopoulos, M. Frigione, T. Keller, Constr. Build. Mater. 2017, 140, 552–561.
- 3
- 3aZ. Cao, X. Zhu, D. Xu, P. Dong, M. O. L. Chee, X. Li, K. Zhu, M. Ye, J. Shen, Energy Storage Mater. 2021, 36, 132–138;
- 3bS. M. Jee, C.-H. Ahn, J. H. Park, T. A. Kim, M. Park, Composites Part B 2020, 202, 108438;
- 3cW. Tian, X. Wang, Y. Ye, W. Wu, Y. Wang, S. Jiang, J. Wang, X. Han, Green Chem. 2023, 25, 10304–10337.
- 4M. Wirts, T. Salthammer, Environ. Sci. Technol. 2002, 36, 1827–1832.
- 5C. Li, H. Xiao, X. Wang, T. Zhao, J. Cleaner Prod. 2018, 180, 272–279.
- 6J. Michels, J. Sena Cruz, R. Christen, C. Czaderski, M. Motavalli, Composites Part B 2016, 98, 434–443.
- 7
- 7aY. Ge, X. Zhang, T. Dai, Y. Wang, Y. Ling, Z. Xu, Z. Heng, M. Liang, H. Zou, Ind. Eng. Chem. Res. 2022, 61, 10990–10998;
- 7bW. Wang, Y. Li, H. Zhang, T. Chen, G. Sun, Y. Han, J. Li, Biomacromolecules 2022, 23, 779–788;
- 7cS. Pruksawan, S. Samitsu, H. Yokoyama, M. Naito, Macromolecules 2019, 52, 2464–2475.
- 8
- 8aD. Quan, D. Carolan, C. Rouge, N. Murphy, A. Ivankovic, J. Mater. Sci. 2017, 52, 4493–4508;
- 8bJ. Moon, Y. Huh, S. Kim, Y. Choe, J. Bang, Chin. J. Polym. Sci. 2021, 39, 1626–1633.
- 9
- 9aY. Zhang, M. Chen, J. Zhang, J. Li, S. Q. Shi, Q. Gao, Adv. Mater. Interfaces 2020, 7, 2000148;
- 9bG. G. Buonocore, L. Schiavo, I. Attianese, A. Borriello, Composites Part B 2013, 53, 187–192.
- 10
- 10aS. Pruksawan, S. Samitsu, Y. Fujii, N. Torikai, M. Naito, ACS Appl. Polym. Mater. 2020, 2, 1234–1243;
- 10bA. Patel, S. Mekala, O. G. Kravchenko, T. Yilmaz, D. Yuan, L. Yue, R. A. Gross, I. Manas-Zloczower, ACS Sustainable Chem. Eng. 2019, 7, 16382–16391.
- 11
- 11aK. Cho, D. Lee, C. E. Park, W. Huh, Polymer 1996, 37, 813–817;
- 11bX. Mi, N. Liang, H. Xu, J. Wu, Y. Jiang, B. Nie, D. Zhang, Prog. Mater. Sci. 2022, 130, 100977.
- 12Y. Li, C. Li, J. He, Y. Gao, Z. Hu, Constr. Build. Mater. 2020, 244, 118400.
- 13D. Ratna, A. K. Banthia, Polym. Int. 2000, 49, 281–287.
- 14H. Dodiuk, S. Kenig, I. Liran, The Journal of Adhesion 1987, 22, 227–251.
- 15
- 15aW. Peng, X. Chen, J. Wang, Mater. Res. Express 2021, 8, 055302;
- 15bO. Ruíz de Azúa, N. Agulló, J. Arbusà, S. Borrós, Polymer 2023, 15.
- 16
- 16aA. O. Konuray, X. Fernández-Francos, X. Ramis, Polym. Chem. 2017, 8, 5934–5947;
- 16bD. Guzmán, X. Ramis, X. Fernández-Francos, A. Serra, Eur. Polym. J. 2014, 59, 377–386.
- 17Y. Lu, Y. Wang, S. Chen, J. Zhang, J. Cheng, M. Miao, D. Zhang, Prog. Org. Coat. 2020, 139, 105436.
- 18J. Zhou, Y. Wan, N. Liu, H. Yin, B. Li, D. Sun, Q. Ran, J. Appl. Polym. Sci. 2018, 135, 45688.
- 19G. Li, Y. Wu, Z. Chen, M. Chen, P. Xiao, X. Li, H. Zhang, P. Zhang, C. Cui, W. Liu, X. Zhao, Y. Zhang, Chem. Eng. J. 2022, 431, 134011.
- 20
- 20aZ. Wang, Z. Li, Z. Gu, Y. Hong, L. Cheng, Carbohydr. Polym. 2012, 88, 699–706;
- 20bG. Goldberg, H. Dodiuk, S. Kenig, R. Cohen, J. Adhes. Sci. Technol. 2014, 28, 1661–1676;
- 20cS. Kotanen, T. Laaksonen, E. Sarlin, Materials Today Communications 2020, 23, 100863;
- 20dB. Li, X. Wang, M. Bai, Y. Shen, Int. J. Adhes. Adhes. 2020, 98, 102537;
- 20eX. Luo, Y. Li, Z. Sun, G. Wang, J. Xin, RSC Adv. 2022, 12, 20471–20480;
- 20fY. Zhang, Z. Guo, X. Chen, Y. Ma, H. Tan, J. Polym. Environ. 2021, 29, 685–693;
- 20gX. Kong, Z. Xu, L. Guan, M. Di, Int. J. Adhes. Adhes. 2014, 48, 75–79;
- 20hD. Ratna, J. Adhes. Sci. Technol. 2008, 22, 101–110;
- 20iB. Thongnuanchan, R. Ninjan, A. Kaesaman, C. Nakason, Polymer Engineering Science 2018, 58, 1610–1618;
- 20jR. Hosseinpourpia, A. Eceiza, S. Adamopoulos, Polymer 2022, 14;
- 20kY. Li, C. Li, J. He, Y. Gao, Z. Hu, Constr. Build. Mater. 2020, 244, 118400;
- 20lD. Wang, J. Li, Y. Wang, A. Olalekan Omoniyi, Z. Fu, J. Zhang, Z. Su, Chem. Eng. J. 2022, 431, 134055;
- 20mA. W. Momber, L. Fröck, T. Marquardt, Marine Structures 2021, 79, 103022.
- 21R. L. Blaine, H. E. Kissinger, Thermochim. Acta 2012, 540, 1–6.
- 22C. Gorkem Dengiz, M. Dorduncu, Theor. Appl. Fract. Mech. 2023, 127, 104062.
- 23N. Teng, J. Dai, S. Wang, J. Hu, X. Liu, Chem. Eng. J. 2022, 428, 131226.
- 24Z. Y. Wang, Y. You, M. Li, M. Z. Rong, M. Q. Zhang, Mater. Horiz. 2023, 10, 4398–4406.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.