Photoelectron Migration Boosted by Hollow Double-Shell Dyads Based on Covalent Organic Frameworks for Highly Efficient Photocatalytic Hydrogen Generation
Meiying Wang
Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, 300130 Tianjin, China
Search for more papers by this authorHaowei Lv
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou, Fujian, China
Search for more papers by this authorCorresponding Author
Beibei Dong
Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, 300130 Tianjin, China
Search for more papers by this authorWenhao He
Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, 300130 Tianjin, China
Search for more papers by this authorProf. Daqiang Yuan
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou, Fujian, China
Search for more papers by this authorProf. Xinchen Wang
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350108 Fuzhou, Fujian, China
Search for more papers by this authorCorresponding Author
Prof. Ruihu Wang
Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, 300130 Tianjin, China
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou, Fujian, China
Search for more papers by this authorMeiying Wang
Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, 300130 Tianjin, China
Search for more papers by this authorHaowei Lv
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou, Fujian, China
Search for more papers by this authorCorresponding Author
Beibei Dong
Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, 300130 Tianjin, China
Search for more papers by this authorWenhao He
Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, 300130 Tianjin, China
Search for more papers by this authorProf. Daqiang Yuan
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou, Fujian, China
Search for more papers by this authorProf. Xinchen Wang
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350108 Fuzhou, Fujian, China
Search for more papers by this authorCorresponding Author
Prof. Ruihu Wang
Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, 300130 Tianjin, China
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou, Fujian, China
Search for more papers by this authorAbstract
Photocatalytic hydrogen production based on noble metal-free systems is a promising technology for the conversion of solar energy into green hydrogen, it is pivotal and challenging to tailor-make photocatalysts for achieving high photocatalytic efficiency. Herein, we reported a hollow double-shell dyad through uniformly coating covalent organic frameworks (COFs) on the surface of hollow Co9S8. The double shell architecture enhances the scattering and refraction efficiency of incident light, shortens the transmission distance of the photogenerated charge carriers, and exposes more active sites for photocatalytic conversion. The hydrogen evolution rate is as high as 23.15 mmol g−1 h−1, which is significantly enhanced when compared with that of their physical mixture (0.30 mmol g−1 h−1) and Pt-based counterpart (11.84 mmol g−1 h−1). This work provides a rational approach to the construction of noble-metal-free photocatalytic systems based on COFs to enhance hydrogen evolution performance.
Open Research
Data Availability Statement
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202401969-sup-0001-misc_information.pdf1.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Q. Zhou, Y. Guo, Y. Zhu, Nat. Catal. 2023, 6, 574–584.
- 2C. M. Wolff, P. D. Frischmann, M. Schulze, B. J. Bohn, R. Wein, P. Livadas, M. T. Carlson, F. Jäckel, J. Feldmann, F. Würthner, J. K. Stolarczyk, Nat. Energy. 2018, 3, 862–869.
- 3H. X. Han, L. J. Tian, D. F. Liu, H. Q. Yu, G. P. Sheng, Y. Xiong, J. Am. Chem. Soc. 2022, 144, 6434–6441.
- 4Z. Shi, X. Zhang, X. Lin, G. Liu, C. Ling, S. Xi, B. Chen, Y. Ge, C. Tan, Z. Lai, Z. Huang, X. Ruan, L. Zhai, L. Li, Z. Li, X. Wang, G. H. Nam, J. Liu, Q. He, Z. Guan, J. Wang, C. S. Lee, A. R. J. Kucernak, H. Zhang, Nature 2023, 621, 300–305.
- 5P. Zhou, I. A. Navid, Y. Ma, Y. Xiao, P. Wang, Z. Ye, B. Zhou, K. Sun, Z. Mi, Nature 2023, 613, 66–70.
- 6W. H. Lee, C. W. Lee, G. D. Cha, B. H. Lee, J. H. Jeong, H. Park, J. Heo, M. S. Bootharaju, S. H. Sunwoo, J. H. Kim, K. H. Ahn, D. H. Kim, T. Hyeon, Nat. Nanotechnol. 2023, 18, 754–762.
- 7M. Ashraf, N. Ullah, I. Khan, W. Tremel, S. Ahmad, M. N. Tahir, Chem. Rev. 2023, 123, 4443–4509.
- 8H. F. Yang, Y. Che, A. I. Cooper, L. J. Chen, X. B. Li, J. Am. Chem. Soc. 2023, 145, 27038–27044.
- 9K. Schwinghammer, S. Hug, M. B. Mesch, J. Senkerd, B. V. Lotsch, Energy Environ. Sci. 2015, 8, 3345–3353.
- 10M. Li, J. Sun, G. Chen, S. Yao, B. Cong, P. Liu, Appl. Catal. B. 2021, 298, 120573.
- 11K. Chen, Y. Shi, P. Shu, Z. Luo, W. Shi, F. Guo, Chem. Eng. J. 2023, 454.
- 12J. J. Zhao, P. F. Liu, Y. L. Wang, Y. H. Li, M. Y. Zu, C. W. Wang, X. L. Wang, L. J. Fang, H. D. Zeng, H. G. Yang, Chem. Eur. J. 2017, 23, 16734–16737.
- 13F. Haase, B. V. Lotsch, Chem. Soc. Rev. 2020, 49, 8469–8500.
- 14X. Wang, L. Chen, S. Y. Chong, M. A. Little, Y. Wu, W. H. Zhu, R. Clowes, Y. Yan, M. A. Zwijnenburg, R. S. Sprick, A. I. Cooper, Nat. Chem. 2018, 10, 1180–1189.
- 15R. Liu, K. T. Tan, Y. Gong, Y. Chen, Z. Li, S. Xie, T. He, Z. Lu, H. Yang, D. Jiang, Chem. Soc. Rev. 2021, 50, 120–242.
- 16T. He, W. Zhen, Y. Chen, Y. Guo, Z. Li, N. Huang, Z. Li, R. Liu, Y. Liu, X. Lian, C. Xue, T. C. Sum, W. Chen, D. Jiang, Nat. Commun. 2023, 14, 329.
- 17S. L. Yang, R. J. Sa, H. Zhong, H. W. Lv, D. Q. Yuan, R. H. Wang, Adv. Funct. Mater. 2022, 32, 2110694.
- 18K. Feng, L. Zhang, J. Gong, J. Qu, R. Niu, Green Energy & Environ. 2023, 8, 567–578.
- 19H. Zhao, L. Wang, G. Liu, Y. Liu, S. Zhang, L. Wang, X. Zheng, L. Zhou, J. Gao, J. Shi, Y. Jiang, ACS Catal. 2023, 13, 6619–6629.
- 20X. Ren, C. Li, J. Liu, H. Li, L. Bing, S. Bai, G. Xue, Y. Shen, Q. Yang, ACS Appl. Mater. Interfaces. 2022, 14, 6885–6893.
- 21H. Wang, C. Qian, J. Liu, Y. Zeng, D. Wang, W. Zhou, L. Gu, H. Wu, G. Liu, Y. Zhao, J. Am. Chem. Soc. 2020, 142, 4862–4871.
- 22W. Chen, L. Wang, D. Mo, F. He, Z. Wen, X. Wu, H. Xu, L. Chen, Angew. Chem. Int. Ed. 2020, 59, 16902–16909.
- 23S. Karak, S. Kumar, P. Pachfule, R. Banerjee, J. Am. Chem. Soc. 2018, 140, 5138–5145.
- 24W. Zhou, Q. W. Deng, H. J. He, L. Yang, T. Y. Liu, X. Wang, D. Y. Zheng, Z. B. Dai, L. Sun, C. Liu, H. Wu, Z. Li, W. Q. Deng, Angew. Chem. Int. Ed. 2022, 62, e202214143.
- 25J. Xu, C. Yang, S. Bi, W. Wang, Y. He, D. Wu, Q. Liang, X. Wang, F. Zhang, Angew. Chem. Int. Ed. 2020, 59, 23845–23853.
- 26T. Tong, B. Zhu, C. Jiang, B. Cheng, J. Yu, Appl. Surf. Sci. 2018, 433, 1175–1183.
- 27X. Li, W. Bi, L. Zhang, S. Tao, W. Chu, Q. Zhang, Y. Luo, C. Wu, Y. Xie, Adv. Mater. 2016, 28, 2427–2431.
- 28D. Shang, D. Li, B. Chen, B. Luo, Y. Huang, W. Shi, ACS Sustainable Chem. Eng. 2021, 9, 14238–14248.
- 29Y. P. Zhang, H. L. Tang, H. Dong, M. Y. Gao, C. C. Li, X. J. Sun, J. Z. Wei, Y. Qu, Z. J. Li, F. M. Zhang, J. Mater. Chem. A. 2020, 8, 4334–4340.
- 30G. Yan, X. Sun, K. Zhang, Y. Zhang, H. Li, Y. Dou, D. Yuan, H. Huang, B. Jia, H. Li, T. Ma, Small. 2022, 18, 2201340.
- 31H. Li, H. Liu, C. Li, J. Liu, J. Liu, Q. Yang, J. Mater. Chem. A. 2020, 8, 18745–18754.
- 32X. L. Li, R. He, Y. J. Dai, S. S. Li, N. Xiao, A. X. Wang, Y. Q. Gao, N. Li, J. F. Gao, L. H. Zhang, L. Ge, Chem. Eng. J. 2020, 400, 125474.
- 33J. Lin, J. He, F. Qi, B. Zheng, X. Wang, B. Yu, K. Zhou, W. Zhang, Y. Li, Y. Chen, Electrochim. Acta. 2017, 247, 258–264.
- 34D. Huang, M. Wen, C. Zhou, Z. Li, M. Cheng, S. Chen, W. Xue, L. Lei, Y. Yang, W. Xiong, W. Wang, Appl. Catal. B. 2020, 267, 118651.
- 35B. Qiu, Q. Zhu, M. Du, L. Fan, M. Xing, J. Zhang, Angew. Chem. Int. Ed. 2017, 56, 2684–2688.
- 36R. Yang, Y. Fan, Y. Zhang, L. Mei, R. Zhu, J. Qin, J. Hu, Z. Chen, Y. Hau Ng, D. Voiry, S. Li, Q. Lu, Q. Wang, J. C. Yu, Z. Zeng, Angew. Chem. Int. Ed. 2023, 62, e202218016.
- 37E. V. Sukhanova, N. Sagatov, A. S. Oreshonkov, P. N. Gavryushkin, Z. I. Popov, Int. J. Hydrogen Energy 2023, 48, 14226–14237.
- 38S. Wang, B. Y. Guan, X. Wang, X. W. D. Lou, J. Am. Chem. Soc. 2018, 140, 15145–15148.
- 39P. Zhang, X. F. Lu, J. Nai, S. Q. Zang, X. W. Lou, Adv. Sci. 2019, 6, 1900576.
- 40Y. Qiu, Z. Xing, M. Guo, Z. Li, N. Wang, W. Zhou, Appl. Catal. B. 2021, 298, 120628.
- 41Y. Zhang, Y. X. Wua, L. Wan, H. J. Ding, H. X. Li, X. Y. Wang, W. H. Zhang, Appl. Catal. B. 2022, 311, 121255.
- 42L. Yin, Y. Zhao, Y. Xing, H. Tan, Z. Lang, W. Ho, Y. Wang, Y. Li, Chem. Eng. J. 2021, 419, 129984.
- 43G. Zhang, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, Angew. Chem. Int. Ed. 2020, 59, 8255–8261.
- 44H. Shen, Y. Z. Wang, G. Liu, L. Li, R. Xia, B. Luo, J. Wang, D. Suo, W. Shi, Y. C. Yong, ACS Catal. 2020, 10, 13290–13295.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.