Water-Tolerant Superbase Polyoxometalate [H2(Nb6O19)]6− for Homogeneous Catalysis
Dr. Soichi Kikkawa
Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192−0397 Japan
Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto, 615−8245, Japan
Search for more papers by this authorYu Fujiki
Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192−0397 Japan
Search for more papers by this authorVorakit Chudatemiya
Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192−0397 Japan
Search for more papers by this authorHiroki Nagakari
Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192−0397 Japan
Search for more papers by this authorKazuki Shibusawa
Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192−0397 Japan
Search for more papers by this authorDr. Jun Hirayama
Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192−0397 Japan
Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto, 615−8245, Japan
Search for more papers by this authorProf. Naoki Nakatani
Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192−0397 Japan
Search for more papers by this authorCorresponding Author
Prof. Seiji Yamazoe
Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192−0397 Japan
Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto, 615−8245, Japan
Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST) 4-1-8, Honcho, Kawaguchi, Saitama, 332-0012 Japan
Search for more papers by this authorDr. Soichi Kikkawa
Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192−0397 Japan
Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto, 615−8245, Japan
Search for more papers by this authorYu Fujiki
Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192−0397 Japan
Search for more papers by this authorVorakit Chudatemiya
Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192−0397 Japan
Search for more papers by this authorHiroki Nagakari
Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192−0397 Japan
Search for more papers by this authorKazuki Shibusawa
Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192−0397 Japan
Search for more papers by this authorDr. Jun Hirayama
Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192−0397 Japan
Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto, 615−8245, Japan
Search for more papers by this authorProf. Naoki Nakatani
Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192−0397 Japan
Search for more papers by this authorCorresponding Author
Prof. Seiji Yamazoe
Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192−0397 Japan
Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto, 615−8245, Japan
Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST) 4-1-8, Honcho, Kawaguchi, Saitama, 332-0012 Japan
Search for more papers by this authorAbstract
Here, doubly protonated Lindqvist-type niobium oxide cluster [H2(Nb6O19)]6–, fabricated by microwave-assisted hydrothermal synthesis, exhibited superbase catalysis for Knoevenagel and crossed aldol condensation reactions accompanied by activating C−H bond with pKa >26 and proton abstraction from a base indicator with pKa=26.5. Surprisingly, [H2(Nb6O19)]6− exhibited water-tolerant superbase properties for Knoevenagel and crossed aldol condensation reactions in the presence of water, although it is well known that the strong basicity of metal oxides and organic superbase is typically lost by the adsorption of water. Density functional theory calculation revealed that the basic surface oxygens that share the corner of NbO6 units in [H2(Nb6O19)]8− maintained the negative charges even after proton adsorption. This proton capacity and the presence of un-protonated basic sites led to the water tolerance of the superbase catalysis.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202401526-sup-0001-misc_information.pdf2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aS. Rojas-Buzo, P. García-García, A. Corma, Green Chem. 2018, 20, 3081–3091;
- 1bH. Zang, K. Wang, M. Zhang, R. Xie, L. Wang, E. Y. X. Chen, Catal. Sci. Technol. 2018, 8, 1777–1798;
- 1cJ. He, Q. Qiang, S. Liu, K. Song, X. Zhou, J. Guo, B. Zhang, C. Li, Fuel 2021, 306, 121765–121788.
- 2
- 2aG. Busca, Ind. Eng. Chem. Res. 2009, 48, 6486–6511;
- 2bH. Hattori, J. Jpn. Pet. Inst. 2004, 47, 67–81.
- 3
- 3aR. Schwesinger, H. Schlemper, Angew. Chem. Int. Ed. 1987, 26, 1167–1169;
- 3bR. Schwesinger, C. Hasenfratz, H. Schlemper, L. Walz, E. M. Peters, K. Peters, H. G. von Schnering, Angew. Chem. Int. Ed. 1993, 32, 1361–1363;
- 3cK. Vazdar, D. Margetic, B. Kovacevic, J. Sundermeyer, I. Leito, U. Jahn, Acc. Chem. Res. 2021, 54, 3108–3123.
- 4
- 4aT. Hashimoto, K. Maruoka, Chem. Rev. 2007, 107, 5656–5682;
- 4bS. Kuwano, T. Suzuki, Y. Hosaka, T. Arai, Chem. Commun. 2018, 54, 3847–3850.
- 5I. Cota, R. Chimentao, J. Sueiras, F. Medina, Catal. Commun. 2008, 9, 2090–2094.
- 6
- 6aK. Tanabe, R. Noyori, Chokyo-san, Chokyo-enki, Kodansha: Tokyo, 1980;
- 6bK. Tanabe, in Stud. Surf. Sci. Catal., Elsevier, 1985, pp. 1–14.
- 7T. Baba, H. Handa, Y. Ono, J. Chem. Soc. Faraday Trans. 1994, 90, 187–191.
- 8
- 8aZ. Wang, P. Fongarland, G. Lu, N. Essayem, J. Catal. 2014, 318, 108–118;
- 8bK. Ebitani, K. Motokura, K. Mori, T. Mizugaki, K. Kaneda, J. Org. Chem. 2006, 71, 5440–5447.
- 9M. Nyman, Dalton Trans. 2011, 40, 8049–8058.
- 10
- 10aT. Birchall, R. Gillespie, Can. J. Chem. 1965, 43, 1045–1051;
- 10bG. A. Olah, J. Sommer, E. Namanworth, J. Am. Chem. Soc. 1967, 89, 3576–3581;
- 10cO. GA, Superacids. John Wiley and Sons; New York 1985, 95–98;
- 10dI. V. Kozhevnikov, Chem. Rev. 1998, 98, 171–198;
- 10eN. Mizuno, M. Misono, Chem. Rev. 1998, 98, 199–218.
- 11
- 11aK. Suzuki, N. Mizuno, K. Yamaguchi, ACS Catal. 2018, 8, 10809–10825;
- 11bY. Iwase, O. Tomita, H. Naito, M. Higashi, R. Abe, J. Photochem. Photobiol. A 2018, 356, 347–354.
- 12
- 12aM. Sadakane, E. Steckhan, Chem. Rev. 1998, 98, 219–238;
- 12bS. S. Wang, G. Y. Yang, Chem. Rev. 2015, 115, 4893–4962.
- 13
- 13aT. Kimura, K. Kamata, N. Mizuno, Angew. Chem. Int. Ed. Engl. 2012, 51, 6700–6703;
- 13bT. Kimura, H. Sunaba, K. Kamata, N. Mizuno, Inorg. Chem. 2012, 51, 13001–13008.
- 14
- 14aK. Sugahara, T. Kimura, K. Kamata, K. Yamaguchi, N. Mizuno, Chem. Commun. 2012, 48, 8422–8424;
- 14bK. Sugahara, N. Satake, K. Kamata, T. Nakajima, N. Mizuno, Angew. Chem. Int. Ed. 2014, 53, 13248–13252.
- 15
- 15aS. Hayashi, N. Sasaki, S. Yamazoe, T. Tsukuda, J. Phys. Chem. C 2018, 122, 29398–29404;
- 15bQ. Xu, Y. Niu, G. Wang, Y. Li, Y. Zhao, V. Singh, J. Niu, J. Wang, Molecular Catalysis 2018, 453, 93–99.
- 16
- 16aS. Hayashi, S. Yamazoe, K. Koyasu, T. Tsukuda, RSC Adv. 2016, 6, 16239–16242;
- 16bS. Hayashi, S. Yamazoe, K. Koyasu, T. Tsukuda, Chem. Asian J. 2017, 12, 1635–1640;
- 16cS. Hayashi, S. Yamazoe, T. Tsukuda, J. Phys. Chem. C 2020, 124, 10975–10980;
- 16dL. F. Gutierrez, E. Nope, H. A. Rojas, J. A. Cubillos, Á. G. Sathicq, G. P. Romanelli, J. J. Martínez, Res. Chem. Intermed. 2018, 44, 5559–5568.
- 17W. Ge, X. Wang, L. Zhang, L. Du, Y. Zhou, J. Wang, Catal. Sci. Technol. 2016, 6, 460–467.
- 18Z. Weng, N. Ogiwara, T. Kitao, Y. Kikukawa, Y. Gao, L. Yan, S. Uchida, Nanoscale 2021, 13, 18451–18457.
- 19
- 19aK. Nakajima, Y. Baba, R. Noma, M. Kitano, J. N. Kondo, S. Hayashi, M. Hara, J. Am. Chem. Soc. 2011, 133, 4224–4227;
- 19bK. Nakajima, J. Hirata, M. Kim, N. K. Gupta, T. Murayama, A. Yoshida, N. Hiyoshi, A. Fukuoka, W. Ueda, ACS Catal. 2017, 8, 283–290;
- 19cT. Kitano, S. Okazaki, T. Shishido, K. Teramura, T. Tanaka, Catal. Today 2012, 192, 189–196;
- 19dK. Tanabe, Catal. Today 2003, 78, 65–77;
- 19eR. M. Pittman, A. T. Bell, J. Phys. Chem. 1993, 97, 12178–12185.
- 20M. A. Rambaran, M. Pascual-Borràs, C. A. Ohlin, Eur. J. Inorg. Chem. 2019, 2019, 3913–3918.
- 21J.-I. Take, N. Kikuchi, Y. Yoneda, J. Catal. 1971, 21, 164–170.
- 22F. G. Bordwell, Acc. Chem. Res. 1988, 21, 456–463.
- 23
- 23aR. Schwesinger, H. Schlemper, C. Hasenfratz, J. Willaredt, T. Dambacher, T. Breuer, C. Ottaway, M. Fletschinger, J. Boele, H. Fritz, Liebigs Ann. 1996, 1996, 1055–1081;
10.1002/jlac.199619960705 Google Scholar
- 23bJ. Saame, T. Rodima, S. Tshepelevitsh, A. Kutt, I. Kaljurand, T. Haljasorg, I. A. Koppel, I. Leito, J. Org. Chem. 2016, 81, 7349–7361.
- 24
- 24aJ. Lauwaert, E. G. Moschetta, P. Van Der Voort, J. W. Thybaut, C. W. Jones, G. B. Marin, J. Catal. 2015, 325, 19–25;
- 24bV. E. Collier, N. C. Ellebracht, G. I. Lindy, E. G. Moschetta, C. W. Jones, ACS Catal. 2015, 6, 460–468.
- 25F. Steffler, R. L. A. Haiduke, Phys. Chem. Chem. Phys. 2022, 24, 13083–13093.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.