Activating and Identifying the Active Site of RuS2 for Alkaline Hydrogen Oxidation Electrocatalysis
Chaoyi Yang
College of Chemistry and Molecular Sciences, Wuhan University, 430072 Wuhan, Hubei, P. R. China
Search for more papers by this authorJianchao Yue
College of Chemistry and Molecular Sciences, Wuhan University, 430072 Wuhan, Hubei, P. R. China
Search for more papers by this authorGuangqin Wang
College of Chemistry and Molecular Sciences, Wuhan University, 430072 Wuhan, Hubei, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Wei Luo
College of Chemistry and Molecular Sciences, Wuhan University, 430072 Wuhan, Hubei, P. R. China
Search for more papers by this authorChaoyi Yang
College of Chemistry and Molecular Sciences, Wuhan University, 430072 Wuhan, Hubei, P. R. China
Search for more papers by this authorJianchao Yue
College of Chemistry and Molecular Sciences, Wuhan University, 430072 Wuhan, Hubei, P. R. China
Search for more papers by this authorGuangqin Wang
College of Chemistry and Molecular Sciences, Wuhan University, 430072 Wuhan, Hubei, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Wei Luo
College of Chemistry and Molecular Sciences, Wuhan University, 430072 Wuhan, Hubei, P. R. China
Search for more papers by this authorAbstract
Searching for highly efficient and economical electrocatalysts for alkaline hydrogen oxidation reaction (HOR) is crucial for the development of alkaline polymer membrane fuel cells. Here, we report a valid strategy to active pyrite-type RuS2 for alkaline HOR electrocatalysis by introducing sulfur vacancies. The obtained S-vacancies modified RuS2−x exhibits outperformed HOR activity with a current density of 0.676 mA cm−2 and mass activity of 1.43 mA μg−1, which are 15-fold and 40-fold improvement than those of Ru catalyst. In situ Raman spectra demonstrate the formation of S−H bond during the HOR process, identifying the S atom of RuS2−x is the real active site for HOR catalysis. Density functional theory calculations and experimental results including in situ surface-enhanced infrared absorption spectroscopy suggest the introduction of S vacancies can rationally modify the p orbital of S atoms, leading to enhanced binding strength between the S sites and H atoms on the surface of RuS2−x, together with the promoted connectivity of hydrogen-bonding network and lowered water formation energy, contributes to the enhanced HOR performance.
Conflict of interests
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202401453-sup-0001-misc_information.pdf4.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aL. Schlapbach, A. Zuttel, Nature 2001, 414, 353–358;
- 1bB. P. Setzler, Z. B. Zhuang, J. A. Wittkopf, Y. S. Yan, Nat. Nanotechnol. 2016, 11, 1020–1025;
- 1cJ. R. Varcoe, P. Atanassov, D. R. Dekel, A. M. Herring, M. A. Hickner, P. A. Kohl, A. R. Kucernak, W. E. Mustain, K. Nijmeijer, K. Scott, T. W. Xu, L. Zhuang, Energy Environ. Sci. 2014, 7, 3135–3191.
- 2
- 2aB. Zhang, X. L. Zheng, O. Voznyy, R. Comin, M. Bajdich, M. Garcia-Melchor, L. L. Han, J. X. Xu, M. Liu, L. R. Zheng, F. P. G. de Arquer, C. T. Dinh, F. J. Fan, M. J. Yuan, E. Yassitepe, N. Chen, T. Regier, P. F. Liu, Y. H. Li, P. De Luna, A. Janmohamed, H. L. L. Xin, H. G. Yang, A. Vojvodic, E. H. Sargent, Science 2016, 352, 333–337;
- 2bG. Huang, Y. Y. Li, L. Tao, Z. F. Huang, Z. J. Kong, C. Xie, S. Q. Du, T. H. Wang, Y. J. Wu, Q. Liu, D. C. Zhang, J. Q. Lin, M. Y. Li, J. Wang, J. Zhang, S. F. Lu, Y. Cheng, S. Y. Wang, Angew. Chem. Int. Ed. 2023, 62, e202215177.
- 3
- 3aH. W. Zhang, P. K. Shen, Chem. Rev. 2012, 112, 2780–2832;
- 3bB. L. Liu, B. Hu, J. Du, D. M. Cheng, H. Y. Zang, X. Ge, H. Q. Tan, Y. H. Wang, X. Z. Duan, Z. Jin, W. Zhang, Y. G. Li, Z. M. Su, Angew. Chem. Int. Ed. 2021, 60, 6076–6085.
- 4
- 4aH. A. Gasteiger, N. M. Markovic, Science 2009, 324, 48–49;
- 4bS. Gottesfeld, D. R. Dekel, M. Page, C. Bae, Y. S. Yan, P. Zelenay, Y. S. Kim, J. Power Sources 2018, 375, 170–184;
- 4cJ. F. Zhang, W. K. Zhu, T. Huang, C. Y. Zheng, Y. B. A. Pei, G. Q. Shen, Z. X. Nie, D. Xiao, Y. Yin, M. D. Guiver, Adv. Sci. 2021, 8, 2100284.
- 5
- 5aW. C. Sheng, H. A. Gasteiger, Y. Shao-Horn, J. Electrochem. Soc. 2010, 157, B1529,–B1536;
- 5bJ. Durst, A. Siebel, C. Simon, F. Hasche, J. Herranz, H. A. Gasteiger, Energy Environ. Sci. 2014, 7, 2255–2260;
- 5cY. Dong, Z. Zhang, W. Yan, X. Hu, C. Zhan, Y. Xu, X. Huang, Angew. Chem. Int. Ed. 2024, DOI: 10.1002/anie.202311722.
- 6
- 6aJ. K. Li, S. Ghoshal, M. K. Bates, T. E. Miller, V. Davies, E. Stavitski, K. Attenkofer, S. Mukerjee, Z. F. Ma, Q. Y. Jia, Angew. Chem. Int. Ed. 2017, 56, 15594–15598;
- 6bM. E. Scofield, Y. C. Zhou, S. Y. Yue, L. Wang, D. Su, X. Tong, M. B. Vukmirovic, R. R. Adzic, S. S. Wong, ACS Catal. 2016, 6, 3895–3908;
- 6cL. H. Fu, Y. B. Li, N. Yao, F. L. Yang, G. Z. Cheng, W. Luo, ACS Catal. 2020, 10, 7322–7327;
- 6dY. Duan, Z. Y. Yu, L. Yang, L. R. Zheng, C. T. Zhang, X. T. Yang, F. Y. Gao, X. L. Zhang, X. X. Yu, R. Liu, H. H. Ding, C. Gu, X. S. Zheng, L. Shi, J. Jiang, J. F. Zhu, M. R. Gao, S. H. Yu, Nat. Commun. 2020, 11, 4789.
- 7
- 7aT. H. Zhao, G. J. Wang, M. X. Gong, D. D. Xiao, Y. Chen, T. Shen, Y. Lu, J. Zhang, H. L. Xin, Q. Li, D. L. Wang, ACS Catal. 2020, 10, 15207–15216;
- 7bL. X. Su, X. R. Fan, Y. M. Jin, H. J. Cong, W. Luo, Small 2023, 19, 2207603;
- 7cY. H. Wang, F. Y. Gao, X. L. Zhang, Y. Yang, J. Liao, Z. Z. Niu, S. Qin, P. P. Yang, P. C. Yu, M. Sun, M. R. Gao, J. Am. Chem. Soc. 2023, 145, 17485–17494.
- 8
- 8aY. Men, D. Wu, Y. C. Hu, L. Li, P. Li, S. F. Jia, J. B. Wang, G. Z. Cheng, S. L. Chen, W. Luo, Angew. Chem. Int. Ed. 2023, 62, e202217976;
- 8bC. H. Zhan, Y. Xu, L. Z. Bu, H. Z. Zhu, Y. G. Feng, T. Yang, Y. Zhang, Z. Q. Yang, B. L. Huang, Q. Shao, X. Q. Huang, Nat. Commun. 2021, 12, 6261.
- 9
- 9aR. Kamai, K. Kamiya, K. Hashimoto, S. Nakanishi, Angew. Chem. Int. Ed. 2016, 55, 13184–13188;
- 9bJ. J. Mao, C. T. He, J. J. Pei, Y. Liu, J. Li, W. X. Chen, D. S. He, D. S. Wang, Y. D. Li, Nano Lett. 2020, 20, 3442–3448;
- 9cM. Ma, G. Li, W. Yan, Z. Z. Wu, Z. P. Zheng, X. B. Zhang, Q. X. Wang, G. F. Du, D. Y. Liu, Z. X. Xie, Q. Kuang, L. S. Zheng, Adv. Energy Mater. 2022, 12, 2103336.
- 10
- 10aX. B. Zhang, L. X. Xia, G. Q. Zhao, B. X. Zhang, Y. P. Chen, J. Chen, M. X. Gao, Y. Z. Jiang, Y. F. Liu, H. G. Pan, W. P. Sun, Adv. Mater. 2023, 35, 2208821;
- 10bC. R. Huang, M. Feng, Y. Peng, B. Zhang, J. L. Huang, X. Yue, S. M. Huang, Adv. Funct. Mater. 2023, 33, 2300593;
- 10cY. Duan, X. L. Zhang, F. Y. Gao, Y. Kong, Y. Duan, X. T. Yang, X. X. Yu, Y. R. Wang, S. Qin, Z. Chen, R. Wu, P. P. Yang, X. S. Zheng, J. F. Zhu, M. R. Gao, T. B. Lu, Z. Y. Yu, S. H. Yu, Angew. Chem. Int. Ed. 2023, 62, e202217275;
- 10dL. X. Su, Y. M. Jin, D. Gong, X. Ge, W. Zhang, X. R. Fan, W. Luo, Angew. Chem. Int. Ed. 2023, 135, e202217275.
- 11
- 11aB. Zhang, J. S. Wang, J. Liu, L. S. Zhang, H. Z. Wan, L. Miao, J. J. Jiang, ACS Catal. 2019, 9, 9332–9338;
- 11bW. Y. Ni, A. Krammer, C. S. Hsu, H. M. Chen, A. Schuler, X. L. Hu, Angew. Chem. Int. Ed. 2019, 58, 7445–7449;
- 11cF. Z. Song, W. Li, J. Q. Yang, G. Q. Han, P. L. Liao, Y. J. Sun, Nat. Commun. 2018, 9, 4531.
- 12
- 12aY. M. Zhao, F. L. Yang, W. Zhang, Q. H. Li, X. W. Wang, L. X. Su, X. M. Hu, Y. Wang, Z. Z. Wang, L. Zhuang, S. L. Chen, W. Luo, CCS Chem. 2022, 4, 1732–1744;
- 12bX. Y. Jin, H. Jang, N. Jarulertwathana, M. G. Kim, S. J. Hwang, ACS Nano 2022, 16, 16452–16461;
- 12cX. L. Jiang, H. S. Jang, S. G. Liu, Z. J. Li, M. G. Kim, C. Li, Q. Qin, X. Liu, J. Cho, Angew. Chem. Int. Ed. 2021, 60, 4110–4116.
- 13
- 13aX. Y. Meng, C. Ma, L. Z. Jiang, R. Si, X. G. Meng, Y. C. Tu, L. Yu, X. H. Bao, D. H. Deng, Angew. Chem. Int. Ed. 2020, 59, 10502–10507;
- 13bZ. D. Li, X. X. Yang, D. He, W. H. Hu, S. Younan, Z. J. Ke, M. Patrick, X. H. Xiao, J. Huang, H. J. Wu, X. Q. Pan, J. Gu, ACS Catal. 2022, 7687–7695;
- 13cX. Zhao, X. Ma, J. Sun, D. H. Li, X. R. Yang, ACS Nano 2016, 10, 2159–2166;
- 13dX. Y. Chia, A. Adriano, P. Lazar, Z. Sofer, J. Luxa, M. Pumera, Adv. Funct. Mater. 2016, 26, 4306–4318.
- 14Y. Li, J. Li, J. Chen, P. Cai, G. Wang, Y. Hou, L. Lei, Z. Wen, J. Power Sources 2020, 472, 228625.
- 15J. Chen, G. Liu, Y.-z. Zhu, M. Su, P. Yin, X.-j. Wu, Q. Lu, C. Tan, M. Zhao, Z. Liu, W. Yang, H. Li, G.-H. Nam, L. Zhang, Z. Chen, X. Huang, P. M. Radjenovic, W. Huang, Z.-q. Tian, J.-f. Li, H. Zhang, J. Am. Chem. Soc. 2020, 142, 7161–7167.
- 16X. Wang, Y. W. Zhang, H. N. Si, Q. H. Zhang, J. Wu, L. Gao, X. F. Wei, Y. Sun, Q. L. Liao, Z. Zhang, K. Ammarah, L. Gu, Z. Kang, Y. Zhang, J. Am. Chem. Soc. 2020, 142, 4298–4308.
- 17I. Alperovich, G. Smolentsev, D. Moonshiram, J. W. Jurss, J. J. Concepcion, T. J. Meyer, A. Soldatov, Y. Pushkar, J. Am. Chem. Soc. 2011, 133, 15786–15794.
- 18J. T. Yu, S. S. Lin, Y. S. Huang, J. Appl. Phys. 1989, 65, 4230–4233.
- 19
- 19aN. Zhang, C. Wang, J. Chen, C. Hu, J. Ma, X. Deng, B. Qiu, L. Cai, Y. Xiong, Y. Cai, ACS Nano 2021, 15, 8537;
- 19bC. I. Hiley, M. R. Lees, J. M. Fisher, D. Thompsett, S. Agrestini, R. I. Smith, R. I. Walton, Angew. Chem. Int. Ed. 2014, 53, 4423.
- 20J. Ohyama, T. Sato, Y. Yamamoto, S. Arai, A. Satsuma, J. Am. Chem. Soc. 2013, 135, 8016–8021.
- 21
- 21aY. Li, J. Abbott, Y. Sun, J. Sun, Y. Du, X. Han, G. Wu, Appl. Catal. B 2019, 258, 117952;
- 21bH. Inoue, J. X. Wang, K. Sasaki, R. R. Adzic, Electroanal. Chem. 2003, 554, 77–85.
- 22H. Wang, Y. Yang, F. J. DiSalvo, H. Abruña, ACS Catal. 2020, 10, 4608–4616.
- 23C. L. Green, A. Kucernak, J. Phys. Chem. B 2002, 106, 1036–1047.
- 24X. Y. Tian, P. C. Zhao, W. C. Sheng, Adv. Mater. 2019, 31, 1808066.
- 25S. Liu, H. Tan, Y. C. Huang, Q. Zhang, H. Lin, L. Li, Z. Hu, W. H. Huang, C. W. Pao, J. F. Lee, Q. Kong, Q. Shao, Y. Xu, X. Huang, Adv. Mater. accepted, DOI: 10.1002/adma.202305659.
- 26S. J. Shen, Z. Y. Hu, H. H. Zhang, K. Song, Z. P. Wang, Z. P. Lin, Q. H. Zhang, L. Gu, W. W. Zhong, Angew. Chem. Int. Ed. 2022, 61, e202206460.
- 27C. Y. Hu, Q. Y. Ma, S. F. Hung, Z. N. Chen, D. H. Ou, B. Ren, H. M. Chen, G. Fu, N. F. Zheng, Chem 2017, 3, 122–133.
- 28P. Li, Y. Jiang, Y. Hu, Y. Men, Y. Liu, W. Cai, S. Chen, Nat. Catal. 2022, 5, 900–911.
- 29S. S. Li, L. Wu, Q. X. Liu, M. Y. Zhu, Z. H. Li, C. Wang, X. E. Jiang, J. H. Li, J. Am. Chem. Soc. 2023, 145, 26711–26719.
- 30A. Hassanali, F. Giberti, J. Cuny, T. D. Kuehne, M. Parrinello, Proc. Natl. Acad. Sci. USA 2013, 110, 13723–13728.
- 31X. W. Guo, E. H. Song, W. Zhao, S. M. Xu, W. L. Zhao, Y. J. Lei, Y. Q. Fang, J. J. Liu, F. Q. Huang, Nat. Commun. 2022, 13, 5954.
- 32
- 32aM. Li, L. Li, X. Huang, X. Qi, M. Deng, S. Jiang, Z. Wei, J. Phys. Chem. Lett. 2022, 13, 10550–10557;
- 32bS. Intikhab, J. D. Snyder, M. H. Tang, ACS Catal. 2017, 7, 8314–8319.
- 33
- 33aK. Hamada, Spectrosc. Lett. 1987, 20, 537–543;
- 33bB. A. Paldus, S. A. Schlueter, A. Anderson, J. Raman Spectrosc. 1992, 23, 87–92.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.