Total Synthesis of Principinol B
Qiang Du
State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu Province, 730000 China
Search for more papers by this authorZhibo Fan
State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu Province, 730000 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Ming Yang
State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu Province, 730000 China
Search for more papers by this authorQiang Du
State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu Province, 730000 China
Search for more papers by this authorZhibo Fan
State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu Province, 730000 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Ming Yang
State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu Province, 730000 China
Search for more papers by this authorAbstract
We have accomplished the first and asymmetric total synthesis of principinol B, a grayanoid possessing an oxabicyclo[3.2.1] architecture. A functionalized 5/7/6/5 tetracyclic intermediate was assembled in a convergent manner by a diastereoselective intermolecular aldol reaction and subsequent carbonyl–olefin metathesis of two enantiomerically enriched fragments. The oxabicyclo[3.2.1] architecture containing a 6,10-ether bridge was constructed by the Williamson ether synthesis.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202400956-sup-0001-misc_information.pdf6.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aL.-Q. Wang, G.-W. Qin, Nat. Prod. Res. 1997, 9, 82–90;
- 1bY. Li, Y.-B. Liu, S.-S. Yu, Phytochem. Rev. 2013, 12, 305–325;
- 1cC.-H. Li, X.-T. Yan, A.-L. Zhang, J.-M. Gao, J. Agric. Food Chem. 2017, 65, 9934–9949;
- 1dC.-H. Li, J.-Y. Zhang, X.-Y. Zhang, S.-H. Li, J.-M. Gao, Eur. J. Med. Chem. 2019, 166, 400–416.
- 2
- 2aN. Hamanaka, T. Matsumoto, Tetrahedron Lett. 1972, 13, 3087–3090;
10.1016/S0040-4039(01)85015-2 Google Scholar
- 2bS. Gasa, N. Hamanaka, S. Matsunaga, T. Okuno, N. Takeda, T. Matsumoto, Tetrahedron Lett. 1976, 17, 553–556.
10.1016/S0040-4039(00)77908-1 Google Scholar
- 3T. Kan, S. Hosokawa, S. Nara, M. Oikawa, S. Ito, F. Matsuda, H. Shirahama, J. Org. Chem. 1994, 59, 5532–5534.
- 4A. Turlik, Y. Chen, A. C. Scruse, T. R. Newhouse, J. Am. Chem. Soc. 2019, 141, 8088–8092.
- 5
- 5aK. Yu, Z.-N. Yang, C.-H. Liu, S.-Q. Wu, X. Hong, X.-L. Zhao, H.-F. Ding, Angew. Chem. Int. Ed. 2019, 58, 8556–8560; Angew. Chem. 2019, 131, 8644–8648;
- 5bJ. Gao, P. Rao, K. Xu, S. Wang, Y. Wu, C. He, H.-F. Ding, J. Am. Chem. Soc. 2020, 142, 4592–4597;
- 5cA. Zhu, Y.-M. Lyu, Q.-D. Xia, Y.-F. Wu, D.-M. Tang, C. He, G.-J. Zheng, Y.-Y. Feng, Y. Wang, G.-M. Yao, H.-F. Ding, J. Am. Chem. Soc. 2023, 145, 8540–8549.
- 6
- 6aL.-R. Kong, H. Yu, M.-P. Deng, F.-R. Wu, Z. Jiang, T.-P. Luo, J. Am. Chem. Soc. 2022, 144, 5268–5273;
- 6bL.-R. Kong, H. Yu, M.-P. Deng, F.-R. Wu, S.-C. Chen, T.-P. Luo, J. Org. Chem. 2023, 88, 6017–6038.
- 7
- 7aY.-R. Wang, R. Zhao, M. Yang, J. Am. Chem. Soc. 2022, 144, 15033–15037;
- 7bM. Yang, Synlett 2023, 34, 2257–2261;
- 7cW.-Z. Zhao, D. Zhang, Y.-R. Wang, M. Yang J. Am. Chem. Soc. 2023, 145, 27160–27166.
- 8T.-H Ma, H. Cheng, M. Pitchakuntla, W.-H Ma, Y.-X Jia, J. Am. Chem. Soc. 2022, 144, 20196–20200.
- 9For synthetic studies, see:
- 9aM. Shiozaki, K. Mori, M. Matsui, T. Hiraoka, Tetrahedron Lett. 1972, 13, 657–660;
10.1016/S0040-4039(01)84403-8 Google Scholar
- 9bT. Kan, F. Matsuda, M. Yanagiya, H. Shirahama, Synlett 1991, 6, 391–392;
10.1055/s-1991-20737 Google Scholar
- 9cT. Kan, M. Oikawa, S. Hosokawa, M. Yanagiya, F. Matsuda, H. Shirahama, Synlett. 1994, 10, 805–808;
10.1055/s-1994-23011 Google Scholar
- 9dL. A. Paquette, S. Borrelly, J. Org. Chem. 1995, 60, 6912–6921;
- 9eS. Borrelly, L. A. Paquette, J. Am. Chem. Soc. 1996, 118, 727–740;
- 9fS. Chow, C. Kreß, N. Albæk, C. Jessen, C. M. Williams, Org. Lett. 2011, 13, 5286–5289;
- 9gJ.-Z. Miao, Y.-X. Zheng, L.-N. Wang, S.-C. Lu, S.-P. Zhang, Y.-L. Gong, S. Xu, Org. Biomol. Chem. 2020, 18, 1877–1880;
- 9hC. G. Webster, H. Park, A. F. Ennis, J. Hong, Tetrahedron Lett. 2021, 71, 153055.
- 10
- 10aT. V. Nguyen, J. M. Hartmann, D. Enders, Synthesis 2013, 45, 845–873;
- 10bP. Chen, L.-J. Liang, Y.-F. Zhu, Z.-M. Xing, Z.-H. Jia, T.-P. Loh, Chin. Chem. Lett. 2023, doi: https://doi.org/10.1016/j.cclet.2023.109229.
- 11C.-C. Liu, C. Lei, Y. Zhong, L.-X. Gao, J.-Y. Li, M.-H. Yu, J. Li, A.-J. Hou, Tetrahedron 2014, 70, 4317–4322.
- 12For selected examples in total synthesis, see:
- 12aJ. R. Stille, R. H. Grubbs, J. Am. Chem. Soc. 1986, 108, 855–856;
- 12bJ. R. Stille, B. D. Santarsiero, R. H. Grubbs, J. Org. Chem. 1990, 55, 843–862;
- 12cS. T. Heller, T. Kiho, A. R. H. Narayan, R. Sarpong, Angew. Chem. Int. Ed. 2013, 52, 11129; Angew. Chem. 2013, 125, 11335;
- 12dB. Hong, H.-H. Li, J.-B. Wu, J. Zhang, X.-G. Lei, Angew. Chem. Int. Ed. 2015, 54, 1011–1015; Angew. Chem. 2015, 127, 1025–1029; for recent reviews on carbonyl–olefin metathesis, see:
- 12eH. Albright, A. J. Davis, J. L. Gomez-Lopez, H. L. Vonesh, P. K. Quach, T. H. Lambert, C. S. Schindler, Chem. Rev. 2021, 121, 9359–9406.
- 13
- 13aK. Tamao, N. Ishida, T. Tanaka, M. Kumada, Organometallics 1983, 2, 1694–1696;
- 13bI. Fleming, R. Henning, H. Plaut, J. Chem. Soc. Chem. Commun. 1984, 29–31.
- 14G. Sarakinos, E. J. Corey, Org. Lett. 1999, 1, 811–814.
- 15J. M. O'Brien, A. H. Hoveyda, J. Am. Chem. Soc. 2011, 133, 7712–7715.
- 16T. Mukaiyama, J. Matsuo, H. Kitagawa, Chem. Lett. 2000, 29, 1250–1251.
- 17M. Asaoka, K. Shima, H. Takei, J. Chem. Soc. Chem. Commun. 1988, 430–431.
- 18J. Tsuji, I. Minami, I. Shimizu, Synthesis 1986, 8, 623–627.
10.1055/s-1986-31723 Google Scholar
- 19Deposition Numbers 2284943 (for deTMS-4), 2284663 (for 26) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 20N. A. Petasis, E. I. Bzowej, J. Am. Chem. Soc. 1990, 112, 6392–6394.
- 21K. C. Nicolaou, M. H. D. Postema, C. F. Claiborne, J. Am. Chem. Soc. 1996, 118, 1565–1566.
- 22For Mn(II) catalysed Mukaiyama hydration see: S. Inoki, K. Kato, S. Isayama, T. Mukaiyama, Chem. Lett. 1990, 19, 1869–1872.
- 23C. Hardouin, E. Doris, B. Rousseau, C. Mioskowski, J. Org. Chem. 2002, 67, 6571–6574.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.