Controllable Double Difluoromethylene Insertions into S−Cu Bonds: (Arylthio)tetrafluoroethylation of Aryl Iodides with TMSCF2Br
Dr. Shitao Pan
Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032 China
Search for more papers by this authorDr. Qiqiang Xie
Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032 China
Search for more papers by this authorDr. Xiu Wang
Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032 China
Search for more papers by this authorRumin Huang
Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032 China
Search for more papers by this authorYuhao Lu
Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032 China
Search for more papers by this authorDr. Chuanfa Ni
Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Jinbo Hu
Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032 China
Search for more papers by this authorDr. Shitao Pan
Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032 China
Search for more papers by this authorDr. Qiqiang Xie
Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032 China
Search for more papers by this authorDr. Xiu Wang
Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032 China
Search for more papers by this authorRumin Huang
Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032 China
Search for more papers by this authorYuhao Lu
Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032 China
Search for more papers by this authorDr. Chuanfa Ni
Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Jinbo Hu
Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032 China
Search for more papers by this authorAbstract
A new method of constructing “ArSCF2CF2Cu” from ArSCu and TMSCF2Br (TMS=trimethylsilyl) has been developed. The cross-coupling reactions of the obtained “ArSCF2CF2Cu” with diverse aryl iodides (Ar′I) provide an efficient access to Ar′CF2CF2SAr. Mechanistic studies demonstrate that the “ArSCF2CF2Cu” species were generated through controllable double difluoromethylene insertions into ArS−Cu bonds rather than the 1,2-addition of ArSCu to tetrafluoroethylene.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202400839-sup-0001-misc_information.pdf13.7 MB | Supporting Information |
ange202400839-sup-0001-Scheme_S1.docx53.2 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1For examples, see:
- 1aC. P. Félix, N. Khatimi, A. J. Laurent, Tetrahedron Lett. 1994, 35, 3303;
- 1bG. K. S. Prakash, R. Mogi, G. A. Olah, Org. Lett. 2006, 8, 3589;
- 1cN. V. Kirij, L. A. Babadzhanova, V. N. Movchun, Y. L. Yagupolskii, W. Tyrra, D. Naumann, H. T. M. Fischer, H. Scherer, J. Fluorine Chem. 2008, 129, 14;
- 1dV. V. Levin, A. D. Dilman, P. A. Belyakov, M. I. Struchkova, V. A. Tartakovsky, Eur. J. Org. Chem. 2008, 31, 5226;
- 1eG. K. S. Prakash, J. Hu, G. A. Olah, Org. Lett. 2003, 5, 3253;
- 1fY. Zhao, J. Zhu, C. Ni, J. Hu, Synthesis 2010, 11, 1899;
- 1gG. K. S. Prakash, Y. Wang, R. Mogi, J. Hu, T. Mathew, G. A. Olah, Org. Lett. 2010, 12, 2932;
- 1hK. Sakavuyi, K. S. Petersen, Tetrahedron Lett. 2013, 54, 6129;
- 1iG. K. S. Prakash, P. V. Jog, P. T. D. Batamak, G. A. Olah, Science 2012, 338, 1324;
- 1jS. Large, N. Roques, B. R. Langlois, J. Org. Chem. 2000, 65, 8848;
- 1kD. A. Nagib, M. E. Scott, D. W. C. MacMillan, J. Am. Chem. Soc. 2009, 131, 10875;
- 1lN. Iqbal, J. Jung, S. Park, E. J. Cho, Angew. Chem. Int. Ed. 2014, 53, 539; Angew. Chem. 2014, 126, 549;
- 1mM. Oishi, H. Kondo, H. Amii, Chem. Commun. 2009, 1909;
- 1nX.-S. Wang, L. Truesdale, J.-Q. Yu, J. Am. Chem. Soc. 2010, 132, 3648.
- 2For examples, see:
- 2aZ. Wei, W. Miao, C. Ni, J. Hu, Angew. Chem. Int. Ed. 2021, 60, 13597; Angew. Chem. 2021, 133, 13709;
- 2bW. Miao, Y. Zhao, C. Ni, B. Gao, W. Zhang, J. Hu, J. Am. Chem. Soc. 2018, 140, 880;
- 2cR. R. Merchant, J. T. Edwards, T. Qian, M. M. Kruszyk, C. Bi, G. Che, D. Bao, W. Qiao, L. Sun, M. R. Collins, O. O. Fadeyi, G. M. Gallego, J. J. Mousseau, P. Nuhant, P. S. Baran, Science 2018, 360, 75;
- 2dP. S. Fier, J. F. Hartwig, J. Am. Chem. Soc. 2012, 134, 5524;
- 2eC. Matheis, K. Jouvin, L. J. Goossen, Org. Lett. 2014, 16, 5984;
- 2fC. Xu, W. Gao, X. He, Y. Guo, X. Zhang, Nat. Commun. 2018, 9, 1170.
- 3For examples, see:
- 3aK. Aikawa, Y. Nakamura, Y. Yokota, W. Toya, K. Mikami, Chem. Eur. J. 2015, 21, 96;
- 3bD. M. Ferguson, J. R. Bour, A. J. Canty, J. W. Kampf, M. S. Sanford, J. Am. Chem. Soc. 2017, 139, 11662;
- 3cN. D. Litvinas, P. S. Fier, J. F. Hartwig, Angew. Chem. Int. Ed. 2012, 51, 536; Angew. Chem. 2012, 124, 551;
- 3dA. Lishchynskyi, V. V. Grushin, J. Am. Chem. Soc. 2013, 135, 12584;
- 3eH. Serizawa, K. Aikawa, K. Mikami, Org. Lett. 2014, 16, 3456;
- 3fJ. Zhu, Y. Li, C. Ni, Q. Shen, Chin. J. Chem. 2016, 34, 662;
- 3gB. Yang, D. Yu, X.-H. Xu, F.-L. Qing, ACS Catal. 2018, 8, 2839;
- 3hC.-P. Zhang, H.-P. Cao, Z.-L. Wang, C.-T. Zhang, Q.-Y. Chen, J.-C. Xiao, Synlett 2010, 7, 1089;
- 3iL. Cui, Y. Matusaki, N. Tada, T. Miura, B. Uno, A. Itoh, Adv. Synth. Catal. 2013, 355, 2203;
- 3jM. Ohashi, N. Ishida, K. Ando, Y. Hashimoto, A. Shigaki, K. Kikushima, S. Ogoshi, Chem. Eur. J. 2018, 24, 9794;
- 3kL. Li, C. Ni, Q. Xie, M. Hu, F. Wang, J. Hu, Angew. Chem. Int. Ed. 2017, 56, 9971; Angew. Chem. 2017, 129, 1013;
- 3lB. Xing, L. Li, C. Ni, J. Hu, Chin. J. Chem. 2019, 37, 1131;
- 3mQ. Xie, L. Li, Z. Zhu, R. Zhang, C. Ni, J. Hu, Angew. Chem. Int. Ed. 2018, 57, 13211; Angew. Chem. 2018, 130, 13395;
- 3nS. Pan, Q. Xie, X. Wang, Q. Wang, C. Ni, J. Hu, Chem. Commun. 2022, 58, 5156.
- 4
- 4aP. Kirsch, F. Huber, M. Lenges, A. Taugerbeck, J. Fluorine Chem. 2001, 112, 69;
- 4bP. Kirsch, M. Bremer, F. Huber, H. Lannert, A. Ruhl, M. Lieb, T. Wallmichrath, J. Am. Chem. Soc. 2001, 123, 5414;
- 4cP. Kirsch, M. Bremer, ChemPhysChem 2010, 11, 357.
- 5
- 5aJ. Fu, Y. Lou, Y. He, Y. Shi, P. Zhou, X. Li, WO Patent 2022086822 A1, 2022;
- 5bE. L. Plummer, US Patent 4636523, 1987;
- 5cD. Bianchi, P. Cesti, S. Spezia, C. Garavaglia, L. Mirennat, J. Agric. Food Chem. 1991, 39, 197;
- 5dR. J. Boisvenue, G. O. P. O'Doherty, Experientia 1980, 36, 189;
- 5eT. A. Evansa, N. Iqbal, Pest Manage. Sci. 2015, 71, 897.
- 6
- 6aM. E. Christy, C. D. Colton, M. Mackay, W. H. Staas, J. B. Wong, E. L. Engelhardt, M. L. Torchiana, C. A. Stone, J. Med. Chem. 1977, 20, 421;
- 6bS. C. Agarwal, G. Lambert, W. Padgett, S. Nesnow, Carcinogenesis 1991, 12, 1647;
- 6cY. Chang, A. Tewari, A.-I. Adi, C. Bae, Tetrahedron 2008, 64, 9837;
- 6dW. R. Dolbier, M. A. Asghar, H.-Q. Pan, L. Celewicz, J. Org. Chem. 1993, 58, 1827;
- 6eX. Zheng, M. E. Mulcahy, D. Horinek, F. Galeotti, T. F. Magnera, J. Michl, J. Am. Chem. Soc. 2004, 126, 4540;
- 6fR. P. Singh, U. Majumder, J. M. Shreeve, J. Org. Chem. 2001, 66, 6263;
- 6gR. P. Singh, J. M. Shreeve, Org. Lett. 2001, 3, 2713;
- 6hR. P. Singh, B. Twamley, J. M. Shreeve, J. Org. Chem. 2002, 67, 1918.
- 7
- 7aC. York, G. K. S. Prakash, G. A. Olah, J. Org. Chem. 1994, 59, 6493;
- 7bJ. Gatenyo, S. Rozen, J. Fluorine Chem. 2009, 130, 332;
- 7cR. F. Merritt, J. Org. Chem. 1967, 32, 4124;
- 7dS. Rozen, M. Brand, J. Org. Chem. 1986, 51, 222;
- 7eA. Gregorčič, M. Zupan, J. Org. Chem. 1979, 44, 4120;
- 7fW. E. Mcewen, A. P. Guzikowski, A. P. Wolf, J. Fluorine Chem. 1984, 25, 169.
- 8For the synthesis of ArOCF2CF2Ar′, see:
- 8aK. Adachi, S. Ogoshi, US Patent 2023227604, 2023;
- 8bS. Deolka, R. Govindarajan, T. Gridneva, M. C. Roy, S. Vasylevskyi, P. K. Vardhanapu, J. R. Khusnutdinova, E. Khaskin, ACS Catal. 2023, 13, 13127;
- 8cJ. Zhu, C. Ni, B. Gao, J. Hu, J. Fluorine Chem. 2015, 171, 139;
- 8dE. L. Plummer, US Patent 4737509A, 1988;
- 8eM. N. Inbasekaran, T. A. Morgan, 4870213A, 1989.
- 9For examples about the synthesis of ArOCF2CF2Br′, see:
- 9aR.-X. Yao, L. Kong, Z.-S. Yin, F.-L. Qing, J. Fluorine Chem. 2008, 129, 1003;
- 9bD. Katayev, J. Václavík, F. Brüning, B. Commare, A. Togni, Chem. Commun. 2016, 52, 4049;
- 9cG.-R. Park, J. Moon, E. J. Cho, Chem. Commun. 2017, 53, 12786;
- 9dB. Commare, A. Togni, Helv. Chim. Acta 2017, 100, e1700059;
- 9eS. Zhang, H. Liu, Y. Deng, X. Huang, J. Fluorine Chem. 2012, 133, 184;
- 9fL. Kong, T. Qi, Z. Ren, Y. Jin, Y. Li, Y. Cheng, F. Xiao, RSC Adv. 2016, 6, 68560;
- 9gJ. Václavík, R. Zschoche, I. Klimánková, V. Matoušek, P. Beier, D. Hilvert, A. Togni, Chem. Eur. J. 2017, 23, 6490;
- 9hV. Matoušek, J. Václavík, P. Hájek, J. Charpentier, Z. E. Blastik, E. Pietrasiak, A. Budinská, A. Togni, P. Beier, Chem. Eur. J. 2016, 22, 417.
- 10D. E. Sunagawa, N. Ishida, H. Iwamoto, M. Ohashi, C. Fruit, S. Ogoshi, J. Org. Chem. 2021, 86, 6015.
- 11For examples about the synthesis of ArSCF2CF2Br’, see:
- 11aZ. Feng, X. Marset, J. Tostado, J. Kircher, Z. She, C. Golz, R. A. Mata, M. Simon, M. Alcarazo, Chem. Eur. J. 2023, 29, e202203966;
- 11bR. Liu, J. Hu, Org. Lett. 2022, 24, 3589;
- 11cV. G. Nenajdenko, A. A. Goldberg, V. M. Muzalevskiy, E. S. Balenkova, A. V. Shastin, Chem. Eur. J. 2013, 19, 2370;
- 11dY. Chernykh, K. Hlat-Glembová, B. Klepetářová, P. Beier, Chem. Eur. J. 2011, 2011, 4528;
- 11eE. Paillard, F. Toulgoat, R. Arvai, C. Iojoiu, L. Cointeaux, M. Medebielle, F. Alloin, B. Langlois, J.-Y. Sanchez, J. Fluorine Chem. 2011, 132, 1213;
- 11fS. Yamada, K. Shimoji, T. Takahashi, T. Konno, T. Ishihara, Chem. Asian J. 2010, 5, 1846;
- 11gF. Toulgoat, B. R. Langlois, M. Médebielle, J.-Y. Sanchez, J. Org. Chem. 2007, 72, 9046;
- 11hY. Choi, C. Yu, J. S. Kim, E. J. Cho, Org. Lett. 2016, 18, 3246.
- 12M. Ohashi, T. Adachi, N. Ishida, K. Kikushima, S. Ogoshi, Angew. Chem. Int. Ed. 2017, 56, 11911; Angew. Chem. 2017, 129, 12073.
- 13
- 13aQ. Xie, Z. Zhu, L. Li, C. Ni, J. Hu, Chem. Sci. 2020, 11, 276;
- 13bX. Wang, S. Pan, Q. Luo, Q. Wang, C. Ni, J. Hu, J. Am. Chem. Soc. 2022, 144, 12202;
- 13cQ. Wang, C. Ni, M. Hu, Q. Xie, Q. Liu, S. Pan, J. Hu, Angew. Chem. Int. Ed. 2020, 59, 8507; Angew. Chem. 2020, 132, 8585;
- 13dA. Liu, C. Ni, Q. Xie, J. Hu, Angew. Chem. Int. Ed. 2023, 62, e202217088; Angew. Chem. 2023, 135, e202217;
- 13eA. Liu, X. Zhang, F. Zhao, C. Ni, J. Hu, J. Am. Chem. Soc. 2024, 146, 1806–1812.
- 14
- 14aD. M. Wiemers, D. J. Burton, J. Am. Chem. Soc. 1986, 108, 832;
- 14bZ.-Y. Yang, D. M. Wiemers, D. J. Burton, J. Am. Chem. Soc. 1992, 114, 4402;
- 14cZ.-Y. Yang, D. J. Burton, J. Fluorine Chem. 2000, 102, 89.
- 15For examples reported by us, see:
- 15aF. Wang, W. Zhang, J. Zhu, H. Li, K.-W. Huang, J. Hu, Chem. Commun. 2011, 47, 2411;
- 15bL. Li, F. Wang, C. Ni, J. Hu, Angew. Chem. Int. Ed. 2013, 52, 12390; Angew. Chem. 2013, 125, 12616;
- 15cQ. Xie, C. Ni, R. Zhang, L. Li, J. Rong, J. Hu, Angew. Chem. Int. Ed. 2017, 56, 3206; Angew. Chem. 2017, 129, 3254;
- 15dQ. Xie, Z. Zhu, L. Li, C. Ni, J. Hu, Angew. Chem. Int. Ed. 2019, 58, 6405; Angew. Chem. 2019, 131, 6471;
- 15eA. Liu, C. Ni, Q. Xie, J. Hu, Angew. Chem. Int. Ed. 2022, 61, e202115467; Angew. Chem. 2022, 134, e202115;
- 15fA. Liu, C. Ni, Q. Xie, J. Hu, Angew. Chem. Int. Ed. 2023, e202217088; Angew. Chem. 2023, e202217088;
- 15gM. Hu, C. Ni, L. Li, Y. Han, J. Hu, J. Am. Chem. Soc. 2015, 137, 14496;
- 15hR. Zhang, Q. Li, Q. Xie, C. Ni, J. Hu, Chem. Eur. J. 2021, 27, 17773.
- 16For examples reported by others:
- 16aJ. Wang, E. Tokunaga, N. Shibata, Chem. Commun. 2018, 54, 8881;
- 16bT. Mita, Y. Harabuchi, S. Maeda, Chem. Sci. 2020, 11, 7569;
- 16cX. Liu, D. Du, S. Li, X. Wang, C. Xu, M. Wang, Adv. Synth. Catal. 2020, 362, 5135;
- 16dR. Zhang, Z. Zhang, K. Wang, J. Wang, J. Org. Chem. 2020, 85, 9791;
- 16eY. Kim, J. Heo, D. Kim, S. Chang, S. Seo, Nat. Commun. 2020, 11, 4761;
- 16fA. L. Trifonov, A. D. Dilman, Org. Lett. 2021, 23, 6977;
- 16gY. Jia, Y. Yuan, J. Huang, Z.-X. Jiang, Z. Yang, Org. Lett. 2021, 23, 2670.
- 17CCDC 2298034 (4 ag) contains crystallographic data for this paper in the Supporting Information. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
- 18For examples, see:
- 18aV. G. Koshechko, L. A. Kiprianova, L. I. Fileleeva, L. I. Kalinina, J. Fluorine Chem. 2007, 128, 1376;
- 18bF. Toulgoat, B. R. Langlois, M. Médebielle, J.-Y. Sanchez, J. Org. Chem. 2007, 72, 9046.
- 19J. Rong, L. Deng, P. Tan, C. Ni, Y. Gu, J. Hu, Angew. Chem. Int. Ed. 2016, 55, 2743; Angew. Chem. 2016, 128, 2793.
- 20For reviews, see:
- 20aC. Ni, M. Hu, J. Hu, Chem. Rev. 2015, 115, 765;
- 20bD. Kaiser, I. Klose, R. Oost, J. Neuhaus, N. Maulide, Chem. Rev. 2019, 119, 8701;
- 20cJ. Lou, Q. Wang, P. Wu, H. Wang, Y.-G. Zhou, Z. Yu, Chem. Soc. Rev. 2020, 49, 4307;
- 20dJ. Corpas, S.-H. Kim-Lee, P. Mauleón, R. G. Arrayás, J. C. Carretero, Chem. Soc. Rev. 2022, 51, 6774.
- 21
- 21aJ. Zhu, H. Zheng, X.-S. Xue, Y. Xiao, Y. Liu, Q. Shen, Chin. J. Chem. 2018, 36, 1069;
- 21bA. Szymaniak, K. McGrath, J. Yu, T. Mann, L. Nguyen, K. Zhu, I. J. Kim, Y. S. Or, WO Patent 2022211812 A1, 2022;
- 21cE. Kerste, K. Harms, U. Koertd, Org. Lett. 2019, 21, 4374;
- 21dJ. E. Carpenter, Y. Huang, Y. Wang, G. Wu, US Patent 2019127362 A1, 2019.
- 22In this paper, both “ArSCu” and “PhSCu” are simplified descriptions of the copper(I) thiolate complexes involved in the reactions. For related structures of ArSCu complexes, see:
- 22aD. Coucouvanis, C. N. Murphy, S. K. Kanodia, Inorg. Chem. 1980, 19, 2993;
- 22bC. Chen, Z. Weng, J. F. Hartwig, Organometallics 2012, 31, 8031.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.