Integrating Olefin Carboamination and Hofmann-Löffler-Freytag Reaction by Radical Deconstruction of Hydrazonyl N−N Bond
Si-Pei Hu
State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorChen-Hui Gao
State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorTu-Ming Liu
State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorBing-Yang Miao
State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorHong-Chen Wang
State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorProf. Dr. Wei Yu
State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Bing Han
State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorSi-Pei Hu
State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorChen-Hui Gao
State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorTu-Ming Liu
State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorBing-Yang Miao
State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorHong-Chen Wang
State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorProf. Dr. Wei Yu
State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Bing Han
State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorAbstract
As a type of elementary organic compounds containing N−N single bond, hydrazone involved chemical conversions are extremely extensive, but they are mainly limited to N2-retention and N2-removal modes. We report herein an unprecedented protocol for the realization of division utilization of the N2-moiety of hydrazone by a radical facilitated N−N bond deconstruction strategy. This new conversion mode enables the successful combination of alkene carboamination and Hofmann-Löffler-Freytag reaction by the reaction of N-homoallyl mesitylenesulfonyl hydrazones with ethyl difluoroiodoacetate under photocatalytic redox neutral conditions. Mechanism studies reveal that the reaction undergoes a radical relay involving addition, crucial remote imino-N migration and H-atom transfer. Consequently, a series of structurally significant ϵ-N-sulphonamide-α,α-difluoro-γ-amino acid esters are efficiently produced via continuous C−C bond and dual C−N bonds forging.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
References
- 1For selected reviews, see:
- 1aR. Lazny, A. Nodzewska, Chem. Rev. 2010, 110, 1386–1434;
- 1bZ. Shao, H. Zhang, Chem. Soc. Rev. 2012, 41, 560–572;
- 1cY. Xia, J.-B. Wang, Chem. Soc. Rev. 2017, 46, 2306–2362;
- 1dD. Zhu, L.-F. Chen, H.-L. Fan, Q.-L. Yao, S.-F. Zhu, Chem. Soc. Rev. 2020, 49, 908–950;
- 1eZ.-H. Liu, P. Sivaguru, G. Zanoni, X.-H. Bi, Acc. Chem. Res. 2022, 55, 1763–1781.
- 2For selected works, see:
- 2aC. D. Mboyi, I. Abdellah, C. Duhayon, Y. Canac, R. Chauvin, ChemCatChem 2013, 10, 3014–3021;
- 2bM.-N. Yang, D.-M. Yan, Q.-Q. Zhao, J.-R. Chen, W.-J. Xiao, Org. Lett. 2017, 19, 5208–5211;
- 2cX.-Z. Kou, Q.-H. Shao, C.-H. Ye, G.-Q. Yang, W.-B. Zhang, J. Am. Chem. Soc. 2018, 140, 7587–7597;
- 2dS.-T. Zhang, S.-J. Wu, Q. Wang, S.-J. Xu, Y. Han, C.-G. Yan, J.-L. Zhang, L. Wang, Angew. Chem. Int. Ed. 2023, 62, e202300309.
- 3
- 3aN. J. Kishner, Russ. Phys. Chem. Soc. 1911, 43, 582–595;
- 3bL. Wolff, Ann. 1912, 394, 86;
- 3cM.-L. Huang, J. Am. Chem. Soc. 1946, 68, 2487–2488;
- 3dM. E. Furrow, A. G. Myers, J. Am. Chem. Soc. 2004, 126, 5436–5445.
- 4
- 4aW. R. Bamford, T. S. Stevens, J. Chem. Soc. 1952, 4735–4740;
- 4bJ. A. May, B. M. Stoltz, J. Am. Chem. Soc. 2002, 124, 12426–12427.
- 5
- 5aR. H. Shapiro, M. J. Heath, J. Am. Chem. Soc. 1967, 89, 5734–5735;
- 5bR. H. Shapiro, M. F. Lipton, K. J. Kolonko, R. L. Buswell, L. A. Capuano, Tetrahedron Lett. 1975, 22, 1811–1814;
10.1016/S0040-4039(00)75263-4 Google Scholar
- 5cR. M. Adlington, G. M. B. Anthony, Acc. Chem. Res. 1983, 16, 55–59.
- 6
- 6aL. Yu, L.-Y. Lv, Z.-H. Qiu, Z.-P. Chen, Z. Tan, Y.-F. Liang, C.-J. Li, Angew. Chem. Int. Ed. 2020, 59, 14009–14013;
- 6bL.-Y. Lv, L. Yu, Z.-H. Qiu, C.-J. Li, Angew. Chem. Int. Ed. 2020, 59, 6466–6472;
- 6cX.-J. Dai, C.-C. Li, C.-J. Li, Chem. Soc. Rev. 2021, 50, 10733–10742.
- 7For selected works, see:
- 7aJ.-W. Zhang, Y.-R. Wang, J.-H. Pan, Y.-H. He, W. Yu, B. Han, Angew. Chem. Int. Ed. 2020, 59, 3900–3904;
- 7bX.-Y. Duan, N.-N. Zhou, R. Fang, X.-L. Yang, W. Yu, B. Han, Angew. Chem. Int. Ed. 2014, 53, 3158–3162;
- 7cX.-Y. Duan, X.-L. Yang, R. Fang, X.-X. Peng, W. Yu, B. Han, J. Org. Chem. 2013, 78, 10692–10704;
- 7dM.-K. Zhu, Y.-C. Chen, T. P. Loh, Chem. Eur. J. 2013, 19, 5250–5254;
- 7eX.-Q. Hu, J.-R. Chen, Q. Wei, F.-L. Liu, Q.-H. Deng, A. M. Beauchemin, W.-J. Xiao, Angew. Chem. Int. Ed. 2014, 53, 12163–12167;
- 7fX.-Q. Hu, X.-T. Qi, J.-R. Chen, Q.-Q. Zhao, Q. Wei, Y. Lan, W.-J. Xiao, Nat. Commun. 2016, 7, 11188;
- 7gC.-J. Yang, C. Zhang, Q.-S. Gu, J.-H. Fang, X.-L. Su, L. Ye, Y. Sun, Y. Tian, Z.-L. Li, X.-Y. Liu, Nat. Catal. 2020, 3, 539–546;
- 7hM. Balkenhohl, S. Kölbl, T. Georgiev, E. M. Carreira, JACS Au 2021, 1, 919–924; For review, see:
- 7iL. Mohammed, H. Norbert, Chem. Soc. Rev. 2021, 50, 7418–7435.
- 8For selected reviews, see:
- 8aS. Z. Zard, Chem. Soc. Rev. 2008, 37, 1603–1618;
- 8bT. Xiong, Q. Zhang, Chem. Soc. Rev. 2016, 45, 3069–3087;
- 8cM. D. Kärkä, ACS Catal. 2017, 7, 4999–5022;
- 8dX.-Y. Yu, Q.-Q. Zhao, J. Chen, W.-J. Xiao, J.-R. Chen, Acc. Chem. Res. 2020, 53, 1066–1083;
- 8eM.-M. Wang, T. V. T. Nguyen, J. Waser, Chem. Soc. Rev. 2022, 51, 7344–7357;
- 8fP. Wang, Q. Zhao, W. Xiao, J. Chen, Green Synth. Catal. 2020, 1, 42–51.
- 9For selected works, see:
- 9aH.-W. Zhang, W.-Y. Pu, T. Xiong, Y. Li, X. Zhou, K. Sun, Q. Liu, Q. Zhang, Angew. Chem. Int. Ed. 2013, 52, 2529–2533;
- 9bD.-H. Wang, L.-Q. Wu, F. Wang, X.-L. Wan, P.-H. Chen, Z.-Y. Lin, G.-S. Liu, J. Am. Chem. Soc. 2017, 139, 6811–6814.
- 10
- 10aM.-M. Wang, J. Waser, Angew. Chem. Int. Ed. 2020, 59, 16420–16424;
- 10bD. Uraguchi, Y. Kimura, F. Ueoka, T. Ooi, J. Am. Chem. Soc. 2020, 142, 19462–19467;
- 10cD. H. White, A. Noble, K. I. Booker-Milburn, V. K. Aggarwal, Org. Lett. 2021, 23, 3038–3042.
- 11For reviews, see:
- 11aE. Nobile, T. Castanheiro, T. Besset, Angew. Chem. Int. Ed. 2021, 60, 12170–12191;
- 11bW.-S. Guo, Q. Wang, J.-P. Zhu, Chem. Soc. Rev. 2021, 50, 7359–7377. For selected works, see:
- 11cZ.-L. Liu, H.-W. Xiao, B.-X. Zhang, H.-G. Shen, L. Zhu, C.-Z. Li, Angew. Chem. Int. Ed. 2019, 58, 2510–2513;
- 11dA. Modak, E. N. Pinter, S. P. Cook, J. Am. Chem. Soc. 2019, 141, 18405–18410.
- 12For selected works, see:
- 12aA.-W. Hofmann, W. Ber. 1883, 16, 558;
10.1002/cber.188301601120 Google Scholar
- 12bK. Löffler, C. Freytag, W. Ber. 1909, 42, 3427;
10.1002/cber.19090420377 Google Scholar
- 12cQ.-X. Qin, S.-Y. Yu, Org. Lett. 2015, 17, 1894–1897;
- 12dC. Martínez, K. Muñiz, Angew. Chem. Int. Ed. 2015, 54, 8287–8291;
- 12eE. A. Wappes, K. M. Nakafuku, D. A. Nagib, J. Am. Chem. Soc. 2017, 139, 10204–10207;
- 12fA. F. Prusinowski, R. K. Twumasi, E. A. Wappes, D. A. Nagib, J. Am. Chem. Soc. 2020, 142, 5429–5438;
- 12gF. Wang, S. S. Stahl, Angew. Chem. Int. Ed. 2019, 58, 6385–6390;
- 12hT. Duhamel, M. D. Martínez, I. K. Sideri, K. Muñiz, ACS Catal. 2019, 9, 7741–7745. For review, see:
- 12iM.-E. Wolff, Chem. Rev. 1963, 63, 55;
- 12jX.-X. Teng, T.-T. Yu, J.-W. Shi, H.-S. Huang, R.-T. Wang, W. Peng, K. Sun, S.-B. Yang, X. Wang, Adv. Synth. Catal. 2023, 365, 3211–3226.
- 13For selected works, see:
- 13aV. A. Schmidt, R. K. Quinn, A. T. Brusoe, E. J. Alexanian, J. Am. Chem. Soc. 2014, 136, 14389–14392;
- 13bQ.-X. Qin, S.-Y. Yu, Org. Lett. 2015, 17, 1894–1897;
- 13cJ.-Y. Li, Z.-H. Zhang, L.-Q. Wu, W. Zhang, P.-H. Chen, Z.-Y. Lin, G.-S. Liu, Nature 2019, 574, 516–521;
- 13dA. E. Bosnidou, T. Duhamel, K. Muñiz, Eur. J. Org. Chem. 2020, 40, 6361–6365.
- 14For selected works, see:
- 14aI. R. Hazelden, X.-F. Ma, T. Langer, J. F. Bower, Angew. Chem. Int. Ed. 2016, 55, 11198–11202;
- 14bJ. Davies, T. D. Svejstrup, D. F. Reina, N. S. Sheikh, D. Leonori, J. Am. Chem. Soc. 2016, 138, 8092–8095;
- 14cH. Jiang, A. Studer, Angew. Chem. Int. Ed. 2018, 57, 10707–10711;
- 14dH. Chen, W.-J. Fan, X.-A. Yuan, S.-Y. Yu, Nat. Commun. 2019, 10, 4743;
- 14eH. Keum, H. Jung, J. Jeong, D. Kim, S. Chang, Angew. Chem. Int. Ed. 2021, 60, 25235–25240.
- 15
- 15aS. K. Ayer, J. L. Roizen, J. Org. Chem. 2019, 84, 3508–3523;
- 15bG. N. Christina, D. Ravelli, E. J. Alexanian, J. Am. Chem. Soc. 2020, 142, 44–49.
- 16For selected works, see:
- 16aE.-Y. Xu, J. Werth, C. B. Roos, A. J. Bendelsmith, M. S. Sigman, R. R. Knowles, J. Am. Chem. Soc. 2022, 144, 18948–18958;
- 16bG.-X. Zhang, H. He, X.-X. Chen, S.-F. Ni, R. Zeng, Org. Lett. 2023, 25, 1600–1604.
- 17
- 17aJ. Guin, R. Fröhlich, A. Studer, Angew. Chem. Int. Ed. 2008, 47, 779–782;
- 17bX. Bao, Q. Wang, J.-P. Zhu, Nat. Commun. 2019, 10, 769.
- 18A. N. Herron, C. P. Hsu, J.-Q. Yu, Org. Lett. 2022, 24, 3652–3656.
- 19Y. -Pan, Z.-Y. Liu, P. Zou, Y.-L. Chen, Y.-Y. Chen, Org. Lett. 2022, 24, 6681–6685.
- 20
- 20aY. Moon, B. Park, I. Kim, G. Kang, S. Shin, D. Kang, M. H. Baik, S. Hong, Nat. Commun. 2019, 10, 4117;
- 20bY. Moon, W. Lee, S. Hong, J. Am. Chem. Soc. 2020, 142, 12420–12429;
- 20cW. Lee, Y. J. Koo, H. Jung, S. Chang, S. Hong, Nat. Chem. 2023, 15, 1091–1099.
- 21D. Wei, T.-M. Liu, Y.-H. He, B.-Y. Wei, J.-H. Pan, J.-W. Zhang, N. Jiao, B. Han, Angew. Chem. Int. Ed. 2021, 60, 26308–26313.
- 22For selected reviews, see:
- 22aH. Jiang, A. Studer, Chem. Soc. Rev. 2020, 49, 1790–1811; For selected works, see:
- 22bF. Wang, D.-H. Wang, X.-L. Wan, L.-Q. Wu, P.-H. Chen, G.-S. Liu, J. Am. Chem. Soc. 2016, 138, 15547–15550;
- 22cB. Qian, S.-W. Chen, T. Wang, X.-H. Zhang, H.-L. Bao, J. Am. Chem. Soc. 2017, 139, 13076–13082.
- 23H. A. Oketch-Rabah, E. F. Madden, A. L. Roe, J. M. Betz, Nutrients 2021, 13, 2742.
- 24T. Tsukamoto, T. Kitazume, J. J. McGuire, J. K. Coward, J. Med. Chem. 1996, 39, 66–72.
- 25
- 25aZ.-P. Liu, Y. Takeuchi, Heterocycles 2002, 56, 693–709;
- 25bM. Pal, V. R. Veeramaneni, S. Kumar, A. Vangoori, R. Mullangi, P. Misra, S. A. Rajjak, V. B. Lohray, S. R. Casturi, K. R. Yeleswarapu, Lett. Drug Des. Discovery 2005, 2, 329–340.
- 26Deposition Numbers 2311989 (for 3 r), 2311985 (for 3 y), and 2311990 (for 4 a) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 27For selected works, see:
- 27aC.-W. Zheng, D. Wang, S. S. Stahl, J. Am. Chem. Soc. 2012, 134, 16496–16499;
- 27bH. Fujimoto, M. Kusano, T. Kodama, M. Tobisu, J. Am. Chem. Soc. 2021, 143, 18394–18399;
- 27cZ.-M. Sun, M.-F. Dai, C.-C. Ding, S.-Q. Chen, L.-A. Chen, J. Am. Chem. Soc. 2023, 145, 18115–18125.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.