Guest-Regulated Generation of Reactive Oxygen Species from Porphyrin-Based Multicomponent Metallacages for Selective Photocatalysis
Ke Gao
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049 Xi'an, P. R. China
These authors contributed equally to this work
Search for more papers by this authorYing Cheng
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049 Xi'an, P. R. China
These authors contributed equally to this work
Search for more papers by this authorCorresponding Author
Dr. Zeyuan Zhang
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049 Xi'an, P. R. China
These authors contributed equally to this work
Search for more papers by this authorXingda Huo
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049 Xi'an, P. R. China
Search for more papers by this authorDr. Chenxing Guo
College of Chemistry and Environmental Engineering, Shenzhen University, 518055 Shenzhen, P. R. China
Search for more papers by this authorDr. Wenlong Fu
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049 Xi'an, P. R. China
Search for more papers by this authorJianzhi Xu
MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of, Physics, Xi'an Jiaotong University, 710049 Xi'an, P. R. China
Search for more papers by this authorProf. Dr. Gao-Lei Hou
MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of, Physics, Xi'an Jiaotong University, 710049 Xi'an, P. R. China
Search for more papers by this authorCorresponding Author
Dr. Xiaobo Shang
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049 Xi'an, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Mingming Zhang
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049 Xi'an, P. R. China
Search for more papers by this authorKe Gao
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049 Xi'an, P. R. China
These authors contributed equally to this work
Search for more papers by this authorYing Cheng
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049 Xi'an, P. R. China
These authors contributed equally to this work
Search for more papers by this authorCorresponding Author
Dr. Zeyuan Zhang
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049 Xi'an, P. R. China
These authors contributed equally to this work
Search for more papers by this authorXingda Huo
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049 Xi'an, P. R. China
Search for more papers by this authorDr. Chenxing Guo
College of Chemistry and Environmental Engineering, Shenzhen University, 518055 Shenzhen, P. R. China
Search for more papers by this authorDr. Wenlong Fu
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049 Xi'an, P. R. China
Search for more papers by this authorJianzhi Xu
MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of, Physics, Xi'an Jiaotong University, 710049 Xi'an, P. R. China
Search for more papers by this authorProf. Dr. Gao-Lei Hou
MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of, Physics, Xi'an Jiaotong University, 710049 Xi'an, P. R. China
Search for more papers by this authorCorresponding Author
Dr. Xiaobo Shang
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049 Xi'an, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Mingming Zhang
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049 Xi'an, P. R. China
Search for more papers by this authorAbstract
The development of novel materials for highly efficient and selective photocatalysis is crucial for their practical applications. Herein, we employ the host-guest chemistry of porphyrin-based metallacages to regulate the generation of reactive oxygen species and further use them for the selective photocatalytic oxidation of benzyl alcohols. Upon irradiation, the sole metallacage (6) can generate singlet oxygen (1O2) effectively via excited energy transfer, while its complex with C70 (6⊃C70) opens a pathway for electron transfer to promote the formation of superoxide anion (O2⋅−), producing both 1O2 and O2⋅−. The addition of 4,4′-bipyridine (BPY) to complex 6⊃C70 forms a more stable complex (6⊃BPY) via the coordination of the Zn-porphyrin faces of 6 and BPY, which drives fullerenes out of the cavities and restores the ability of 1O2 generation. Therefore, benzyl alcohols are oxidized into benzyl aldehydes upon irradiation in the presence of 6 or 6⊃BPY, while they are oxidized into benzoic acids when 6⊃C70 is employed as the photosensitizing agent. This study demonstrates a highly efficient strategy that utilizes the host-guest chemistry of metallacages to regulate the generation of reactive oxygen species for selective photooxidation reactions, which could promote the utilization of metallacages and their related host-guest complexes for photocatalytic applications.
Conflict of interests
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202319488-sup-0001-misc_information.pdf5.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aK. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Nature 2006, 440, 295;
- 1bL. Candish, K. D. Collins, G. C. Cook, J. J. Douglas, A. Gómez-Suárez, A. Jolit, S. Keess, Chem. Rev. 2022, 122, 2907–2980.
- 2
- 2aS. Fukuzumi, K. Ohkubo, Chem. Sci. 2013, 4, 561–574;
- 2bJ. Kou, C. Lu, J. Wang, Y. Chen, Z. Xu, R. S. Varma, Chem. Rev. 2017, 117, 1445–1514.
- 3
- 3aG. Zhao, F. Yang, Z. Chen, Q. Liu, Y. Ji, Y. Zhang, Z. Niu, J. Mao, X. Bao, P. Hu, Y. Li, Nat. Commun. 2017, 8, 14039;
- 3bH. Song, X. Meng, S. Wang, W. Zhou, X. Wang, T. Kako, J. Ye, J. Am. Chem. Soc. 2019, 141, 20507–20515.
- 4
- 4aY. Jiang, C. Wang, C. R. Rogers, M. S. Kodaimati, E. A. Weiss, Nat. Chem. 2019, 11, 1034–1040;
- 4bJ. Qiao, Z. Q. Song, C. Huang, R. N. Ci, Z. Liu, B. Chen, C. H. Tung, L. Z. Wu, Angew. Chem. Int. Ed. 2021, 60, 27201–27205; Angew. Chem. 2021, 133, 27407–27411.
- 5
- 5aL. Jiao, Y. Wang, H. L. Jiang, Q. Xu, Adv. Mater. 2018, 30, e1703663;
- 5bJ. D. Xiao, H. L. Jiang, Acc. Chem. Res. 2019, 52, 356–366;
- 5cG. Lu, F. Chu, X. Huang, Y. Li, K. Liang, G. Wang, Coord. Chem. Rev. 2022, 450, 214240.
- 6
- 6aY. Xu, M. Kraftacd, R. Xu, Chem. Soc. Rev. 2016, 45, 3039–3052;
- 6bH. Yu, R. Shi, Y. Zhao, G. I. N. Waterhouse, L. Z. Wu, C. H. Tung, T. Zhang, Adv. Mater. 2016, 28, 9454–9477.
- 7
- 7aE. M. Zahran, N. M. Bedford, M. A. Nguyen, Y. J. Chang, B. S. Guiton, R. R. Naik, L. G. Bachas, M. R. Knecht, J. Am. Chem. Soc. 2014, 136, 32–35;
- 7bC. Dong, C. Lian, S. Hu, Z. Deng, J. Gong, M. Li, H. Liu, M. Xing, J. Zhang, Nat. Commun. 2017, 9, 1252.
- 8
- 8aX. Z. Fan, J. W. Rong, H. L. Wu, Q. Zhou, H. P. Deng, J. D. Tan, C. W. Xue, L. Z. Wu, H. R. Tao, J. Wu, Angew. Chem. Int. Ed. 2018, 57, 8514–8518; Angew. Chem. 2018, 130, 8650–8654;
- 8bX. Fan, M. Zhang, Y. Gao, Q. Zhou, Y. Zhang, J. Yu, W. Xu, J. Yan, H. Liu, Z. Lei, Y. C. Ter, S. Chanmungkalakul, Y. Lum, X. Liu, G. Cui, J. Wu, Nat. Chem. 2023, 15, 666–676.
- 9
- 9aZ. Zhang, Y. Zhu, X. Chen, H. Zhang, J. Wang, Adv. Mater. 2018, 31, e1806626;
- 9bJ. Yu, L. Huang, Q. Tang, S.-B. Yu, Q.-Y. Qi, J. Zhang, D. Ma, Y. Lei, J. Su, Y. Song, J.-C. Eloi, R. L. Harniman, U. Borucu, L. Zhang, M. Zhu, F. Tian, L. Du, D. L. Phillips, I. Manners, R. Ye, J. Tian, Nat. Catal. 2023, 6, 464–475.
- 10
- 10aY. Inokuma, M. Kawano, M. Fujita, Nat. Chem. 2011, 3, 349–358;
- 10bC. J. Brown, F. D. Toste, R. G. Bergman, K. N. Raymond, Chem. Rev. 2015, 115, 3012–3035;
- 10cX. Jing, C. He, L. Zhao, C. Duan, Acc. Chem. Res. 2019, 52, 100–109;
- 10dY. Sun, C. Chen, J. Liu, P. J. Stang, Chem. Soc. Rev. 2020, 49, 3889–3919;
- 10eC. T. McTernan, J. A. Davies, J. R. Nitschke, Chem. Rev. 2022, 122, 10393–10437;
- 10fR. Ham, C. J. Nielsen, Sonja Pullen, J. N. H. Reek, Chem. Rev. 2023, 123, 5225–5261;
- 10gR. Banerjee, D. Chakraborty, P. S. Mukherjee, J. Am. Chem. Soc. 2023, 145, 7692–7711.
- 11
- 11aP. P. Neelakandan, A. Jimenez, J. D. Thoburn, J. R. Nitschke, Angew. Chem. Int. Ed. 2015, 54, 14378–14382; Angew. Chem. 2015, 127, 14586–14590;
- 11bD. Preston, J. J. Sutton, K. C. Gordon, J. D. Crowley, Angew. Chem. Int. Ed. 2018, 57, 8659–8663; Angew. Chem. 2018, 130, 8795–8799;
- 11cJ. Wei, L. Zhao, C. He, S. Zheng, J. N. H. Reek, C. Duan, J. Am. Chem. Soc. 2019, 141, 12707–12716;
- 11dY. C. Luo, K. L. Chu, J. Y. Shi, D. J. Wu, X. D. Wang, M. Mayor, C. Y. Su, J. Am. Chem. Soc. 2019, 141, 13057–13065;
- 11eZ. Zhang, Z. Zhao, Y. Hou, H. Wang, X. Li, G. He, M. Zhang, Angew. Chem. Int. Ed. 2019, 58, 8862–8866; Angew. Chem. 2019, 131, 8954–8958;
- 11fV. Martinez-Agramunt, E. Peris, Inorg. Chem. 2019, 58, 11836–11842;
- 11gS. Bhattacharyya, S. R. Ali, M. Venkateswarulu, P. Howlader, E. Zangrando, M. De, P. S. Mukherjee, J. Am. Chem. Soc. 2020, 142, 18981–18989;
- 11hT. A. Young, V. Marti-Centelles, J. Wang, P. J. Lusby, F. Duarte, J. Am. Chem. Soc. 2020, 142, 1300–1310;
- 11iR. Zaffaroni, E. O. Bobylev, R. Plessius, J. I. van der Vlugt, J. N. H. Reek, J. Am. Chem. Soc. 2020, 142, 8837–8847;
- 11jD. N. Yan, L. X. Cai, P. M. Cheng, S. J. Hu, L. P. Zhou, Q. F. Sun, J. Am. Chem. Soc. 2021, 143, 16087–16094;
- 11kY. Hou, Z. Zhang, L. Ma, R. Shi, S. Ling, X. Li, G. He, M. Zhang, CCS Chem. 2022, 4, 2604–2611;
- 11lY. Wang, J. Chen, J. Yang, Z. Jiao, C. Y. Su, Angew. Chem. Int. Ed. 2023, 62, e202303288; Angew. Chem. 2023, 135, e202303288;
- 11mY. Yang, X. Jing, Y. Shi, Y. Wu, C. Duan, J. Am. Chem. Soc. 2023, 145, 10136–10148.
- 12X. Jing, C. He, Y. Yang, C. Duan, J. Am. Chem. Soc. 2015, 137, 3967–3974.
- 13R. Banerjee, D. Chakraborty, W.-T. Jhang, Y.-T. Chan, P. S. Mukherjee, Angew. Chem. Int. Ed. 2023, 62, e202305338; Angew. Chem. 2023, 135, e202305338.
- 14J. P. Yuan, Z. J. Guan, H. Y. Lin, B. Yan, K. K. Liu, H. C. Zhou, Y. Fang, Angew. Chem. Int. Ed. 2023, 62, e202303896; Angew. Chem. 2023, 135, e202303896.
- 15
- 15aY. Hou, Z. Zhang, S. Lu, J. Yuan, Q. Zhu, W. P. Chen, S. Ling, X. Li, Y. Z. Zheng, K. Zhu, M. Zhang, J. Am. Chem. Soc. 2020, 142, 18763–18768;
- 15bC. Mu, Z. Zhang, Y. Hou, H. Liu, L. Ma, X. Li, S. Ling, G. He, M. Zhang, Angew. Chem. Int. Ed. 2021, 60, 12293–12297; Angew. Chem. 2021, 133, 12401–12405;
- 15cH. Liu, Z. Zhang, C. Mu, L. Ma, H. Yuan, S. Ling, H. Wang, X. Li, M. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202207289; Angew. Chem. 2022, 134, e202207289;
- 15dZ. Zhang, L. Ma, F. Fang, Y. Hou, C. Lu, C. Mu, Y. Zhang, H. Liu, K. Gao, M. Wang, Z. Zhang, X. Li, M. Zhang, JACS Au 2022, 2, 1479–1487;
- 15eK. Gao, Q. Feng, Z. Zhang, R. Zhang, Y. Hou, C. Mu, X. Li, M. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202209958; Angew. Chem. 2022, 134, e202209958;
- 15fC. Mu, L. Zhang, G. Li, Y. Hou, H. Liu, Z. Zhang, R. Zhang, T. Gao, Y. Qian, C. Guo, G. He, M. Zhang, Angew. Chem. Int. Ed. 2023, 62, e202311137; Angew. Chem. 2023, 135, e202311137;
- 15gR. Zhang, D. Hu, Y. Fu, Q. Feng, C. Mu, K. Gao, H. Ma, M. Liu, M. Zhang, Aggregate 2023, e408.
- 16M. J. Frisch, G. W. Trucks, H. B. G. E. M. Schlegel, Scuseria, A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, A. J. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 Reversion E.01; Gaussian Inc., Wallingford CT, 2013.
- 17
- 17aC. Garcia-Simon, M. Garcia-Borras, L. Gomez, T. Parella, S. Osuna, J. Juanhuix, I. Imaz, D. Maspoch, M. Costas, X. Ribas, Nat. Commun. 2014, 5, 5557;
- 17bY. Shi, K. Cai, H. Xiao, Z. Liu, J. Zhou, D. Shen, Y. Qiu, Q. H. Guo, C. Stern, M. R. Wasielewski, F. Diederich, W. A. Goddard III, J. F. Stoddart, J. Am. Chem. Soc. 2018, 140, 13835–13842;
- 17cR. D. Mukhopadhyay, Y. Kim, J. Koo, K. Kim, Acc. Chem. Res. 2018, 51, 2730–2738.
- 18
- 18aK. X. Teng, L. Y. Niu, Q. Z. Yang, Chem. Sci. 2022, 13, 5951–5956;
- 18bK. X. Teng, L. Y. Niu, N. Xie, Q. Z. Yang, Nat. Commun. 2022, 13, 6179;
- 18cK. X. Teng, L. Y. Niu, Q. Z. Yang, J. Am. Chem. Soc. 2023, 145, 4081–4087;
- 18dD. Zhang, K. X. Teng, L. Zhao, L. Y. Niu, Q. Z. Yang, Adv. Mater. 2023, 35, 2209789.
- 19J. Guan, F. Wang, T. Ziegler, H. Cox, J. Chem. Phys. 2006, 125, 044314.
- 20Y. Z. Chen, Z. U. Wang, H. Wang, J. Lu, S. H. Yu, H. L. Jiang, J. Am. Chem. Soc. 2017, 139, 2035–2044.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.