Post-synthetic Rhodium (III) Complexes in Covalent Organic Frameworks for Photothermal Heterogeneous C−H Activation
Dr. Teng Li
School of Chemistry, South China Normal University, 510006 Guangzhou, P. R. China
Search for more papers by this authorPei-Lin Zhang
School of Chemistry, South China Normal University, 510006 Guangzhou, P. R. China
Search for more papers by this authorDr. Long-Zhang Dong
School of Chemistry, South China Normal University, 510006 Guangzhou, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Ya-Qian Lan
School of Chemistry, South China Normal University, 510006 Guangzhou, P. R. China
Search for more papers by this authorDr. Teng Li
School of Chemistry, South China Normal University, 510006 Guangzhou, P. R. China
Search for more papers by this authorPei-Lin Zhang
School of Chemistry, South China Normal University, 510006 Guangzhou, P. R. China
Search for more papers by this authorDr. Long-Zhang Dong
School of Chemistry, South China Normal University, 510006 Guangzhou, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Ya-Qian Lan
School of Chemistry, South China Normal University, 510006 Guangzhou, P. R. China
Search for more papers by this authorAbstract
Although photocatalytic C−H activation has been realized by using heterogeneous catalysts, most of them require high-temperature conditions to provide the energy required for C−H bond breakage. The catalysts with photothermal conversion properties can catalyze this reaction efficiently at room temperature, but so far, these catalysts have been rarely developed. Here, we construct bifunctional catalysts Rh-COF-316 and -318 to combine photosensitive covalent organic frameworks (COFs) and transition-metal catalytic moiety using a post-synthetic approach. The Rh-COF enable the heterogeneous C−H activation reaction by photothermal conversion for the first time, and exhibit excellent yields (up to 98 %) and broad scope of substrates in [4+2] annulation at room temperature, while maintaining the high stability and recyclability. Significantly, this work is the highest yield reported so far in porous materials catalyzing C(sp2)−C(sp2) formation at room temperature. The excellent performances can be attributed to the COF-316, which enhances the photothermal effect (ΔT=50.9 °C), thus accelerating C−H bond activation and the exchange of catalyst with substrates.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202318180-sup-0001-misc_information.pdf4.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aN. Goswami, T. Bhattacharya, D. Maiti, Nat. Chem. Rev. 2021, 5, 646–659;
- 1bT. Rogge, N. Kaplaneris, N. Chatani, J. Kim, S. Chang, B. Punji, L. L. Schafer, D. G. Musaev, J. Wencel-Delord, C. A. Roberts, R. Sarpong, Z. E. Wilson, M. A. Brimble, M. J. Johansson, L. Ackermann, Nat. Rev. Methods Primer 2021, 1, 43;
- 1cY. He, Z. Huang, K. Wu, J. Ma, Y.-G. Zhou, Z. Yu, Chem. Soc. Rev. 2022, 51, 2759–2852.
- 2R. A. Sheldon, Green Chem. 2017, 19, 18–43.
- 3
- 3aM. D. Kärkäs, J. A. Jr. Porco, C. R. J. Stephenson, Chem. Rev. 2016, 116, 9683–9747;
- 3bN. A. Romero, D. A. Nicewicz, Chem. Rev. 2016, 116, 10075–10166.
- 4
- 4aD. C. Fabry, M. Rueping, Acc. Chem. Res. 2016, 49, 1969–1979;
- 4bJ. Twilton, C. (Chip) Le, P. Zhang, M. H. Shaw, R. W. Evans, D. W. C. MacMillan, Nat. Chem. Rev. 2017, 1, 1–19;
- 4cK. P. S. Cheung, S. Sarkar, V. Gevorgyan, Chem. Rev. 2022, 122, 1543–1625.
- 5
- 5aJ. C. Tellis, D. N. Primer, G. A. Molander, Science 2014, 345, 433–436;
- 5bZ. Zuo, D. T. Ahneman, L. Chu, J. A. Terrett, A. G. Doyle, D. W. C. MacMillan, Science 2014, 345, 437–440;
- 5cI. B. Perry, T. F. Brewer, P. J. Sarver, D. M. Schultz, D. A. DiRocco, D. W. C. MacMillan, Nature 2018, 560, 70–75.
- 6
- 6aD. C. Fabry, J. Zoller, S. Raja, M. Rueping, Angew. Chem. Int. Ed. 2014, 53, 10228–10231;
- 6bD. C. Fabry, M. A. Ronge, J. Zoller, M. Rueping, Angew. Chem. Int. Ed. 2015, 54, 2801–2805;
- 6cD. C. Fabry, J. Zoller, M. Rueping, Org. Chem. Front. 2019, 6, 2635–2639.
- 7
- 7aA. P. Côté, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, O. M. Yaghi, Science 2005, 310, 1166–1170;
- 7bH. M. El-Kaderi, J. R. Hunt, J. L. Mendoza-Cortés, A. P. Côté, R. E. Taylor, M. O'Keeffe, O. M. Yaghi, Science 2007, 316, 268–272;
- 7cX. Guan, F. Chen, Q. Fang, S. Qiu, Chem. Soc. Rev. 2020, 49, 1357–1384.
- 8T. Zhang, G. Zhang, L. Chen, Acc. Chem. Res. 2022, 55, 795–808.
- 9M. Lu, M. Zhang, J. Liu, Y. Chen, J.-P. Liao, M.-Y. Yang, Y.-P. Cai, S.-L. Li, Y.-Q. Lan, Angew. Chem. Int. Ed. 2022, 61, e202200003.
- 10X. Guan, Q. Fang, Y. Yan, S. Qiu, Acc. Chem. Res. 2022, 55, 1912–1927.
- 11L. Yang, J. Wang, K. Zhao, Z. Fang, H. Qiao, L. Zhai, L. Mi, ChemPlusChem 2022, 87, e202200281.
- 12S. Liu, M. Wang, Y. He, Q. Cheng, T. Qian, C. Yan, Coord. Chem. Rev. 2023, 475, 214882.
- 13
- 13aA. López-Magano, B. Ortín-Rubio, I. Imaz, D. Maspoch, J. Alemán, R. Mas-Ballesté, ACS Catal. 2021, 11, 12344–12354;
- 13bH. Chen, W. Liu, A. Laemont, C. Krishnaraj, X. Feng, F. Rohman, M. Meledina, Q. Zhang, R. Van Deun, K. Leus, P. Van Der Voort, Angew. Chem. Int. Ed. 2021, 60, 10820–10827;
- 13cW. Dong, Y. Yang, Y. Xiang, S. Wang, P. Wang, J. Hu, L. Rao, H. Chen, Green Chem. 2021, 23, 5797–5805.
- 14
- 14aJ. Jia, X. Bu, X. Yang, J. Mater. Chem. A 2022, 10, 11514–11523;
- 14bS. Li, L. Li, Y. Li, L. Dai, C. Liu, Y. Liu, J. Li, J. Lv, P. Li, B. Wang, ACS Catal. 2020, 10, 8717–8726;
- 14cT.-X. Luan, L. Du, J.-R. Wang, K. Li, Q. Zhang, P.-Z. Li, Y. Zhao, ACS Nano 2022, 16, 21565–21575.
- 15
- 15aL. Yang, H. Huang, Chem. Rev. 2015, 115, 3468–3517;
- 15bS. Jeong, J. M. Joo, Acc. Chem. Res. 2021, 54, 4518–4529.
- 16X. Wang, D. E. Wedge, S. J. Cutler, Nat. Prod. Commun. 2016, 11, 1934578X1601101.
- 17
- 17aT. Reiner, D. Jantke, A. Raba, A. N. Marziale, J. Eppinger, J. Organomet. Chem. 2009, 694, 1934–1937;
- 17bB. Zhang, M. Wei, H. Mao, X. Pei, S. A. Alshmimri, J. A. Reimer, O. M. Yaghi, J. Am. Chem. Soc. 2018, 140, 12715–12719.
- 18B. Sánchez-Page, M. V. Jiménez, J. J. Pérez-Torrente, V. Passarelli, J. Blasco, G. Subias, M. Granda, P. Álvarez, ACS Appl. Nano Mater. 2020, 3, 1640–1655.
- 19I. Choi, A. M. Messinis, X. Hou, L. Ackermann, Angew. Chem. Int. Ed. 2021, 60, 27005–27012.
- 20
- 20aT.-H. Park, A. J. Hickman, K. Koh, S. Martin, A. G. Wong-Foy, M. S. Sanford, A. J. Matzger, J. Am. Chem. Soc. 2011, 133, 20138–20141;
- 20bY. Huang, T. Ma, P. Huang, D. Wu, Z. Lin, R. Cao, ChemCatChem 2013, 5, 1877–1883;
- 20cH. T. N. Le, T. T. Nguyen, P. H. L. Vu, T. Truong, N. T. S. Phan, J. Mol. Catal. Chem. 2014, 391, 74–82;
- 20dP. Pachfule, M. K. Panda, S. Kandambeth, S. M. Shivaprasad, D. D. Díaz, R. Banerjee, J. Mater. Chem. A 2014, 2, 7944–7952;
- 20eN. T. S. Phan, C. K. Nguyen, T. T. Nguyen, T. Truong, Catal. Sci. Technol. 2014, 4, 369–377;
- 20fC. Huang, J. Wu, C. Song, R. Ding, Y. Qiao, H. Hou, J. Chang, Y. Fan, Chem. Commun. 2015, 51, 10353–10356;
- 20gY.-B. Huang, M. Shen, X. Wang, P. Huang, R. Chen, Z.-J. Lin, R. Cao, J. Catal. 2016, 333, 1–7;
- 20hN. B. Nguyen, G. H. Dang, D. T. Le, T. Truong, N. T. S. Phan, ChemPlusChem 2016, 81, 361–369;
- 20iH. T. T. Nguyen, D. N. A. Doan, T. Truong, J. Mol. Catal. Chem. 2017, 426, 141–149;
- 20jS. Liu, W. Pan, S. Wu, X. Bu, S. Xin, J. Yu, H. Xu, X. Yang, Green Chem. 2019, 21, 2905–2910;
- 20kK. Otake, J. Ye, M. Mandal, T. Islamoglu, C. T. Buru, J. T. Hupp, M. Delferro, D. G. Truhlar, C. J. Cramer, O. K. Farha, ACS Catal. 2019, 9, 5383–5390;
- 20lI. Anastasiou, N. Van Velthoven, E. Tomarelli, A. Lombi, D. Lanari, P. Liu, S. Bals, D. E. De Vos, L. Vaccaro, ChemSusChem 2020, 13, 2786–2791;
- 20mN. Huber, K. A. I. Zhang, Eur. Polym. J. 2020, 140, 110060;
- 20nZ. Li, S. Han, C. Li, P. Shao, H. Xia, H. Li, X. Chen, X. Feng, X. Liu, J. Mater. Chem. A 2020, 8, 8706–8715;
- 20oM. Tian, S. Liu, X. Bu, J. Yu, X. Yang, Chem. Eur. J. 2020, 26, 369–373;
- 20pN. Van Velthoven, Y. Wang, H. Van Hees, M. Henrion, A. L. Bugaev, G. Gracy, K. Amro, A. V. Soldatov, J. G. Alauzun, P. H. Mutin, D. E. De Vos, ACS Appl. Mater. Interfaces 2020, 12, 47457–47466;
- 20qH. Cheng, C. Zang, F. Bian, Y. Jiang, L. Yang, F. Dong, H. Jiang, Catal. Sci. Technol. 2021, 11, 5543–5552;
- 20rY. Mohr, M. Alves-Favaro, R. Rajapaksha, G. Hisler, A. Ranscht, P. Samanta, C. Lorentz, M. Duguet, C. Mellot-Draznieks, E. A. Quadrelli, F. M. Wisser, J. Canivet, ACS Catal. 2021, 11, 3507–3515;
- 20sY. Tang, F. Chen, S. Wang, Q. Sun, X. Meng, F.-S. Xiao, Chem. Eur. J. 2021, 27, 8684–8688;
- 20tY. Tang, Z. Dai, S. Wang, F. Chen, X. Meng, F.-S. Xiao, Chem. Asian J. 2021, 16, 2469–2474.
- 21
- 21aS. Liu, Z. Liu, Q. Meng, C. Chen, M. Pang, ACS Appl. Mater. Interfaces 2021, 13, 56873–56880;
- 21bD. Dutta, J. Wang, X. Li, Q. Zhou, Z. Ge, Small 2022, 18, 2202369;
- 21cY.-R. Wang, H.-M. Ding, S.-N. Sun, J. Shi, Yi.-L. Yang, Q. Li, Y. Chen, S.-L. Li, Y.-Q. Lan, Angew. Chem. Int. Ed. 2022, 61, e202212162.
- 22K. Ueura, T. Satoh, M. Miura, Org. Lett. 2007, 9, 1407–1409.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.