Adjusting the Architecture of Heptagonal Metallo-Macrocycles by Embedding Metal Nodes into the Backbone
He Zhao
Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorA. M. Shashika D. Wijerathna
Department of Physics, Old Dominion University, Norfolk, VA 23529 USA
Search for more papers by this authorQiangqiang Dong
Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorQixia Bai
Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006 China
Search for more papers by this authorZhiyuan Jiang
Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorDr. Jie Yuan
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007 China
Search for more papers by this authorJun Wang
Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006 China
Search for more papers by this authorMingzhao Chen
Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006 China
Search for more papers by this authorMarkus Zirnheld
Department of Physics, Old Dominion University, Norfolk, VA 23529 USA
Search for more papers by this authorRockwell Li
Department of Physics, Old Dominion University, Norfolk, VA 23529 USA
Search for more papers by this authorDr. Die Liu
Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Pingshan Wang
Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006 China
Search for more papers by this authorCorresponding Author
Dr. Yuan Zhang
Department of Physics, Old Dominion University, Norfolk, VA 23529 USA
Search for more papers by this authorCorresponding Author
Dr. Yiming Li
Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorHe Zhao
Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorA. M. Shashika D. Wijerathna
Department of Physics, Old Dominion University, Norfolk, VA 23529 USA
Search for more papers by this authorQiangqiang Dong
Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorQixia Bai
Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006 China
Search for more papers by this authorZhiyuan Jiang
Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorDr. Jie Yuan
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007 China
Search for more papers by this authorJun Wang
Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006 China
Search for more papers by this authorMingzhao Chen
Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006 China
Search for more papers by this authorMarkus Zirnheld
Department of Physics, Old Dominion University, Norfolk, VA 23529 USA
Search for more papers by this authorRockwell Li
Department of Physics, Old Dominion University, Norfolk, VA 23529 USA
Search for more papers by this authorDr. Die Liu
Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Pingshan Wang
Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006 China
Search for more papers by this authorCorresponding Author
Dr. Yuan Zhang
Department of Physics, Old Dominion University, Norfolk, VA 23529 USA
Search for more papers by this authorCorresponding Author
Dr. Yiming Li
Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorAbstract
Coordination-driven self-assembly has been extensively employed for the bottom-up construction of discrete metallo-macrocycles. However, the prevalent use of benzene rings as the backbone limits the formation of large metallo-macrocycles with more than six edges. Herein, by embedding metal nodes into the ligand backbone, we successfully regulated the ligand arm angle and assembled two giant heptagonal metallo-macrocycles with precise control. The angle between two arms at position 4 of the central terpyridine (tpy) extended after complexation with metal ions, leading to ring expansion of the metallo-macrocycle. The assembled structures were straightforwardly identified through multi-dimensional NMR spectroscopy (1H, COSY, NOESY), multidimensional mass spectrometry analysis (ESI-MS and TWIM-MS), transmission electron microscopy (TEM), as well as scanning tunneling microscopy (STM). In addition, the catalytic performances of metallo-macrocycles in the oxidation of thioanisole were studied, with both supramolecules exhibiting good conversion rates. Furthermore, fiber-like nanostructures were observed from single-molecule heptagons by hierarchical self-assembly.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202318029-sup-0001-misc_information.pdf13.2 MB | Supporting Information |
ange202318029-sup-0001-tpy-Cu.cif868 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. Fujita, K. Ogura, Coord. Chem. Rev. 1996, 148, 249–264;
- 1bS. R. Seidel, P. J. Stang, Acc. Chem. Res. 2002, 35, 972–983;
- 1cM. Fujita, M. Tominaga, A. Hori, B. Therrien, Acc. Chem. Res. 2005, 38, 369–378;
- 1dM. M. Smulders, I. A. Riddell, C. Browne, J. R. Nitschke, Chem. Soc. Rev. 2013, 42, 1728–1754;
- 1eM. Han, D. M. Engelhard, G. H. Clever, Chem. Soc. Rev. 2014, 43, 1848–1860;
- 1fT. R. Cook, P. J. Stang, Chem. Rev. 2015, 115, 7001–7045;
- 1gH. Li, Z.-J. Yao, D. Liu, G.-X. Jin, Coord. Chem. Rev. 2015, 293–294, 139–157;
- 1hG. R. Newkome, C. N. Moorefield, Chem. Soc. Rev. 2015, 44, 3954–3967;
- 1iL. Xu, Y. X. Wang, L. J. Chen, H. B. Yang, Chem. Soc. Rev. 2015, 44, 2148–2167;
- 1jG. H. Clever, P. Punt, Acc. Chem. Res. 2017, 50, 2233–2243;
- 1kS. Chakraborty, G. R. Newkome, Chem. Soc. Rev. 2018, 47, 3991–4016;
- 1lS. Pullen, G. H. Clever, Acc. Chem. Res. 2018, 51, 3052–3064;
- 1mC. T. McTernan, J. A. Davies, J. R. Nitschke, Chem. Rev. 2022, 122, 10393–10437;
- 1nY. Domoto, M. Fujita, Coord. Chem. Rev. 2022, 466, 214605.
- 2
- 2aM. Fujita, S. Y. Yu, T. Kusukawa, H. Funaki, K. Yamaguchi, Angew. Chem. Int. Ed. 1998, 37, 2082–2085;
10.1002/(SICI)1521-3773(19980817)37:15<2082::AID-ANIE2082>3.0.CO;2-0 CAS PubMed Web of Science® Google Scholar
- 2bS.-H. Hwang, P. Wang, C. N. Moorefield, L. A. Godínez, J. Manríquez, E. Bustos, G. R. Newkome, Chem. Commun. 2005, 4672–4674;
- 2cL. Y. Yao, L. Qin, S. Y. Yu, Chem. Asian J. 2012, 7, 2555–2558;
- 2dJ. E. Beves, C. J. Campbell, D. A. Leigh, R. G. Pritchard, Angew. Chem. Int. Ed. 2013, 52, 6464–6467;
- 2eH. J. Takahiro Fukino, Yuki Hisada, Maiko Obana, Hiroshi Yamagishi, Takaaki Hikima, Masaki Takata, Norifumi Fujita, Takuzo Aida, Science 2014, 344, 499–504;
- 2fY. Ye, S.-P. Wang, B. Zhu, T. R. Cook, J. Wu, S. Li, P. J. Stang, Org. Lett. 2015, 17, 2804–2807;
- 2gZ. Jiang, Y. Li, M. Wang, D. Liu, J. Yuan, M. Chen, J. Wang, G. R. Newkome, W. Sun, X. Li, P. Wang, Angew. Chem. Int. Ed. 2017, 56, 11450–11455;
- 2hL. Zhang, A. J. Stephens, J.-F. Lemonnier, L. Pirvu, I. J. Vitorica-Yrezabal, C. J. Robinson, D. A. Leigh, J. Am. Chem. Soc. 2019, 141, 3952–3958.
- 3
- 3aJ. Kang, J. Rebek, Nature 1996, 382, 239–241;
- 3bL. R. MacGillivray, J. L. Atwood, Nature 1997, 389, 469–472;
- 3cM. Hong, Y. Zhao, W. Su, R. Cao, M. Fujita, Z. Zhou, A. S. C. Chan, J. Am. Chem. Soc. 2000, 122, 4819–4820;
- 3dD. Beaudoin, F. Rominger, M. Mastalerz, Angew. Chem. Int. Ed. 2016, 55, 15599–15603;
- 3eD. Fujita, R. Suzuki, Y. Fujii, M. Yamada, T. Nakama, A. Matsugami, F. Hayashi, J.-K. Weng, M. Yagi-Utsumi, M. Fujita, Chem 2021, 7, 2672–2683;
- 3fA. Dhamija, C. K. Das, Y. H. Ko, Y. Kim, R. D. Mukhopadhyay, A. Gunnam, X. Yu, I.-C. Hwang, L. V. Schäfer, K. Kim, Chem 2022, 8, 543–556.
- 4
- 4aC. J. E. Haynes, J. Zhu, C. Chimerel, S. Hernández-Ainsa, I. A. Riddell, T. K. Ronson, U. F. Keyser, J. R. Nitschke, Angew. Chem. Int. Ed. 2017, 56, 15388–15392;
- 4bT. Jiao, G. Wu, L. Chen, C.-Y. Wang, H. Li, J. Org. Chem. 2018, 83, 12404–12410.
- 5
- 5aQ.-F. Sun, J. Iwasa, D. Ogawa, Y. Ishido, S. Sato, T. Ozeki, Y. Sei, K. Yamaguchi, M. Fujita, Science 2010, 328, 1144–1147;
- 5bF. J. Rizzuto, J. R. Nitschke, Nat. Chem. 2017, 9, 903–908.
- 6
- 6aM. D. Pluth, R. G. Bergman, K. N. Raymond, Science 2007, 316, 85–88;
- 6bP. Mal, B. Breiner, K. Rissanen, J. R. Nitschke, Science 2009, 324, 1697–1699;
- 6cD. M. Kaphan, M. D. Levin, R. G. Bergman, K. N. Raymond, F. D. Toste, Science 2015, 350, 1235–1238.
- 7
- 7aP. Mal, D. Schultz, K. Beyeh, K. Rissanen, J. R. Nitschke, Angew. Chem. Int. Ed. 2008, 47, 8297–8301;
- 7bD. Fujita, Y. Ueda, S. Sato, N. Mizuno, T. Kumasaka, M. Fujita, Nature 2016, 540, 563–566.
- 8
- 8aL. You, J. S. Berman, E. V. Anslyn, Nat. Chem. 2011, 3, 943–948;
- 8bS. Shanmugaraju, H. Jadhav, Y. P. Patil, P. S. Mukherjee, Inorg. Chem. 2012, 51, 13072–13074.
- 9
- 9aJ. Wang, B. L. Feringa, Science 2011, 331, 1429–1432;
- 9bLukas J. Jongkind, Johannes A. A. W. Elemans, Joost N. H. Reek, Angew. Chem. Int. Ed. 2019, 58, 2696–2699.
- 10
- 10aD. Zhang, T. K. Ronson, Y.-Q. Zou, J. R. Nitschke, Nat. Chem. Rev. 2021, 5, 168–182;
- 10bS.-T. Guo, P.-F. Cui, X.-R. Liu, G.-X. Jin, J. Am. Chem. Soc. 2022, 144, 22221–22228;
- 10cP.-F. Cui, X.-R. Liu, Y.-J. Lin, Z.-H. Li, G.-X. Jin, J. Am. Chem. Soc. 2022, 144, 6558–6565.
- 11E. Arunkumar, C. C. Forbes, B. C. Noll, B. D. Smith, J. Am. Chem. Soc. 2005, 127, 3288–3289.
- 12A. M. Wilson, P. J. Bailey, P. A. Tasker, J. R. Turkington, R. A. Grant, J. B. Love, Chem. Soc. Rev. 2014, 43, 123–134.
- 13D. Ma, G. Hettiarachchi, D. Nguyen, B. Zhang, J. B. Wittenberg, P. Y. Zavalij, V. Briken, L. Isaacs, Nat. Chem. 2012, 4, 503–510.
- 14
- 14aB. Jiang, W. Wang, Y. Zhang, Y. Lu, C. W. Zhang, G. Q. Yin, X. L. Zhao, L. Xu, H. Tan, X. Li, G. X. Jin, H. B. Yang, Angew. Chem. Int. Ed. 2017, 56, 14438–14442;
- 14bK. Omoto, S. Tashiro, M. Shionoya, Chem. Sci. 2019, 10, 7172–7176.
- 15J. H. Tang, Y. Li, Q. Wu, Z. Wang, S. Hou, K. Tang, Y. Sun, H. Wang, H. Wang, C. Lu, X. Wang, X. Li, D. Wang, J. Yao, C. J. Lambert, N. Tao, Y. W. Zhong, P. J. Stang, Nat. Commun. 2019, 10, 4599.
- 16H. Wang, C.-H. Liu, K. Wang, M. Wang, H. Yu, S. Kandapal, R. Brzozowski, B. Xu, M. Wang, S. Lu, X.-Q. Hao, P. Eswara, M.-P. Nieh, J. Cai, X. Li, J. Am. Chem. Soc. 2019, 141, 16108–16116.
- 17
- 17aS.-S. Li, H.-J. Yan, L.-J. Wan, H.-B. Yang, B. H. Northrop, P. J. Stang, J. Am. Chem. Soc. 2007, 129, 9268–9269;
- 17bM. Iyoda, J. Yamakawa, M. J. Rahman, Angew. Chem. Int. Ed. 2011, 50, 10522–10553;
- 17cH. Sepehrpour, W. Fu, Y. Sun, P. J. Stang, J. Am. Chem. Soc. 2019, 141, 14005–14020;
- 17dR. Tabuchi, H. Takezawa, M. Fujita, Angew. Chem. Int. Ed. 2022, 61, e202208866.
- 18Y.-T. Chan, X. Li, J. Yu, G. A. Carri, C. N. Moorefield, G. R. Newkome, C. Wesdemiotis, J. Am. Chem. Soc. 2011, 133, 11967–11976.
- 19
- 19aM. Fujita, J. Yazaki, K. Ogura, J. Am. Chem. Soc. 1990, 112, 5645–5647;
- 19bM. Fujita, J. Synth. Org. Chem. Jpn. 1996, 54, 953–963;
- 19cJ. Hamacek, M. Borkovec, C. Piguet, Chem. Eur. J. 2005, 11, 5217–5226;
- 19dJ. Hamacek, M. Borkovec, C. Piguet, Dalton Trans. 2006, 12, 1473–1490;
- 19eJ. E. Beves, E. C. Constable, C. E. Housecroft, M. Neuburger, S. Schaffner, E. J. Shardlow, Dalton Trans. 2007, 16, 1593–1602;
- 19fL. Zhao, B. H. Northrop, P. J. Stang, J. Am. Chem. Soc. 2008, 130, 11886–11888;
- 19gD. Liu, Z. Jiang, M. Wang, X. Yang, H. Liu, M. Chen, C. N. Moorefield, G. R. Newkome, X. Li, P. Wang, Chem. Commun. 2016, 52, 9773–9776.
- 20G. Q. Yin, H. Wang, X. Q. Wang, B. Song, L. J. Chen, L. Wang, X. Q. Hao, H. B. Yang, X. Li, Nat. Commun. 2018, 9, 567.
- 21
- 21aF. Arico, T. Chang, S. J. Cantrill, S. I. Khan, J. F. Stoddart, Chemistry 2005, 11, 4655–4666;
- 21bH. J. Hogben, J. K. Sprafke, M. Hoffmann, M. Pawlicki, H. L. Anderson, J. Am. Chem. Soc. 2011, 133, 20962–20969;
- 21cP. Neuhaus, A. Cnossen, J. Q. Gong, L. M. Herz, H. L. Anderson, Angew. Chem. Int. Ed. 2015, 54, 7344–7348;
- 21dT. Zhang, L.-P. Zhou, X.-Q. Guo, L.-X. Cai, Q.-F. Sun, Nat. Commun. 2017, 8, 15898;
- 21eS. M. Kopp, H. Gotfredsen, J. R. Deng, T. D. W. Claridge, H. L. Anderson, J. Am. Chem. Soc. 2020, 142, 19393–19401;
- 21fD. P. August, J. Jaramillo-Garcia, D. A. Leigh, A. Valero, I. J. Vitorica-Yrezabal, J. Am. Chem. Soc. 2021, 143, 1154–1161;
- 21gG. Wang, Y. Yang, H. Liu, M. Chen, Z. Jiang, Q. Bai, J. Yuan, Z. Jiang, Y. Li, P. Wang, Angew. Chem. Int. Ed. 2022, 61, e202205851.
- 22
- 22aH. Yamagishi, T. Fukino, D. Hashizume, T. Mori, Y. Inoue, T. Hikima, M. Takata, T. Aida, J. Am. Chem. Soc. 2015, 137, 7628–7631;
- 22bH. Wang, Y. Li, H. Yu, B. Song, S. Lu, X. Q. Hao, Y. Zhang, M. Wang, S. W. Hla, X. Li, J. Am. Chem. Soc. 2019, 141, 13187–13195;
- 22cM. Jirasek, H. L. Anderson, M. D. Peeks, Acc. Chem. Res. 2021, 54, 3241–3251;
- 22dT.-H. Shi, S. Fa, Y. Nagata, K. Wada, S. Ohtani, K. Kato, T. Ogoshi, Cell Rep. Phys. Sci. 2022, 3, 101173.
- 23Z. Zhang, Y. Li, B. Song, Y. Zhang, X. Jiang, M. Wang, R. Tumbleson, C. Liu, P. Wang, X.-Q. Hao, T. Rojas, A. T. Ngo, J. L. Sessler, G. R. Newkome, S. W. Hla, X. Li, Nat. Chem. 2020, 12, 468–474.
- 24
- 24aY. Li, G.-F. Huo, B. Liu, B. Song, Y. Zhang, X. Qian, H. Wang, G.-Q. Yin, A. Filosa, W. Sun, S. W. Hla, H.-B. Yang, X. Li, J. Am. Chem. Soc. 2020, 142, 14638–14648;
- 24bY.-Q. He, W. Fudickar, J.-H. Tang, H. Wang, X. Li, J. Han, Z. Wang, M. Liu, Y.-W. Zhong, T. Linker, P. J. Stang, J. Am. Chem. Soc. 2020, 142, 2601–2608;
- 24cS.-C. Wang, K.-Y. Cheng, J.-H. Fu, Y.-C. Cheng, Y.-T. Chan, J. Am. Chem. Soc. 2020, 142, 16661–16667;
- 24dF. Su, S. Zhang, Z. Chen, Z. Zhang, Z. Li, S. Lu, M. Zhang, F. Fang, S. Kang, C. Guo, C. Su, X. Yu, H. Wang, X. Li, J. Am. Chem. Soc. 2022, 144, 16559–16571.
- 25
- 25aH. Wang, Y. Li, N. Li, A. Filosa, X. Li, Nat. Rev. Mater. 2020, 6, 145–167;
- 25bJ. Shi, Y. Li, X. Jiang, H. Yu, J. Li, H. Zhang, D. J. Trainer, S. W. Hla, H. Wang, M. Wang, X. Li, J. Am. Chem. Soc. 2021, 143, 1224–1234.
- 26
- 26aJ. E. Beves, E. L. Dunphy, E. C. Constable, C. E. Housecroft, C. J. Kepert, M. Neuburger, D. J. Price, S. Schaffner, Dalton Trans. 2008, 3, 386–396;
- 26bJ. E. Beves, E. C. Constable, C. E. Housecroft, M. Neuburger, S. Schaffner, Polyhedron 2008, 27, 2395–2401;
- 26cT. Wu, Z. Jiang, Q. Bai, Y. Li, S. Mao, H. Yu, L. Wojtas, Z. Tang, M. Chen, Z. Zhang, T.-Z. Xie, M. Wang, X. Li, P. Wang, Chem 2021, 7, 2429–2441;
- 26dD. Liu, K. Li, M. Chen, T. Zhang, Z. Li, J.-F. Yin, L. He, J. Wang, P. Yin, Y.-T. Chan, P. Wang, J. Am. Chem. Soc. 2021, 143, 2537–2544.
- 27
- 27aJ. H. Fu, Y. H. Lee, Y. J. He, Y. T. Chan, Angew. Chem. Int. Ed. 2015, 54, 6231–6235;
- 27bD. Liu, M. Chen, Y. Li, Y. Shen, J. Huang, X. Yang, Z. Jiang, X. Li, G. R. Newkome, P. Wang, Angew. Chem. Int. Ed. 2018, 57, 14116–14120.
- 28
- 28aC. Patoux, J.-P. Launay, M. Beley, S. Chodorowski-Kimmes, J.-P. Collin, S. James, J.-P. Sauvage, J. Am. Chem. Soc. 1998, 120, 3717–3725;
- 28bY.-W. Zhong, N. Vila, J. C. Henderson, S. Flores-Torres, H. D. Abruña, Inorg. Chem. 2007, 46, 10470–10472.
- 29
- 29aS. Hiraoka, K. Harano, M. Shiro, Y. Ozawa, N. Yasuda, K. Toriumi, M. Shionoya, Angew. Chem. Int. Ed. 2006, 45, 6488–6491;
- 29bJ. Wang, Z. Jiang, W. Liu, Z. Wu, R. Miao, F. Fu, J.-F. Yin, B. Chen, Q. Dong, H. Zhao, K. Li, G. Wang, D. Liu, P. Yin, Y. Li, M. Chen, P. Wang, Angew. Chem. Int. Ed. 2023, 62, e202214237.
- 30
- 30aB. M. Schulze, D. L. Watkins, J. Zhang, I. Ghiviriga, R. K. Castellano, Org. Biomol. Chem. 2014, 12, 7932–7936;
- 30bD. S. Gill, H. Anand, J. K. Puri, Z. Naturforsch. 2004, 59, 615–620.
- 31
- 31aB. T. Ruotolo, J. L. P. Benesch, A. M. Sandercock, S.-J. Hyung, C. V. Robinson, Nat. Protoc. 2008, 3, 1139–1152;
- 31bY.-T. Chan, X. Li, M. Soler, J.-L. Wang, C. Wesdemiotis, G. R. Newkome, J. Am. Chem. Soc. 2009, 131, 16395–16397;
- 31cE. R. Brocker, S. E. Anderson, B. H. Northrop, P. J. Stang, M. T. Bowers, J. Am. Chem. Soc. 2010, 132, 13486–13494;
- 31dJ. Song, C. H. Grün, R. M. A. Heeren, H.-G. Janssen, O. F. van den Brink, Angew. Chem. Int. Ed. 2010, 49, 10168–10171.
- 32
- 32aM. Wang, C. Wang, X. Q. Hao, J. Liu, X. Li, C. Xu, A. Lopez, L. Sun, M. P. Song, H. B. Yang, X. Li, J. Am. Chem. Soc. 2014, 136, 6664–6671;
- 32bB. Sun, M. Wang, Z. Lou, M. Huang, C. Xu, X. Li, L. J. Chen, Y. Yu, G. L. Davis, B. Xu, H. B. Yang, X. Li, J. Am. Chem. Soc. 2015, 137, 1556–1564.
- 33
- 33aS. De Feyter, F. C. De Schryver, Chem. Soc. Rev. 2003, 32, 139–150;
- 33bD. V. Kondratuk, L. M. A. Perdigão, A. M. S. Esmail, J. N. O′Shea, P. H. Beton, H. L. Anderson, Nat. Chem. 2015, 7, 317–322;
- 33cS. Wu, S. Xu, Y. Geng, Z. Liu, H. Nie, L. Shu, K. Deng, Q. Zeng, C. Wang, J. Phys. Chem. C 2016, 120, 12618–12625;
- 33dS. A. Meißner, T. Eder, T. J. Keller, D. A. Hofmeister, S. Spicher, S.-S. Jester, J. Vogelsang, S. Grimme, J. M. Lupton, S. Höger, Nat. Commun. 2021, 12, 6614.
- 34
- 34aM. Wang, K. Wang, C. Wang, M. Huang, X. Q. Hao, M. Z. Shen, G. Q. Shi, Z. Zhang, B. Song, A. Cisneros, M. P. Song, B. Xu, X. Li, J. Am. Chem. Soc. 2016, 138, 9258–9268;
- 34bH. Wang, X. Qian, K. Wang, M. Su, W. W. Haoyang, X. Jiang, R. Brzozowski, M. Wang, X. Gao, Y. Li, B. Xu, P. Eswara, X. Q. Hao, W. Gong, J. L. Hou, J. Cai, X. Li, Nat. Commun. 2018, 9, 1815.
- 35
- 35aA. Rostami, B. Mohammadi, Z. Shokri, S. Saadati, Catal. Commun. 2018, 111, 59–63;
- 35bL. Luo, X. Xiao, Q. Li, S. Wang, Y. Li, J. Hou, B. Jiang, ACS Appl. Mater. Interfaces 2021, 13, 58596–58604.
- 36K. Jiang, L. S. Schadler, R. W. Siegel, X. Zhang, H. Zhang, M. Terrones, J. Mater. Chem. 2004, 14, 37–39.
- 37B. Song, S. Kandapal, J. Gu, K. Zhang, A. Reese, Y. Ying, L. Wang, H. Wang, Y. Li, M. Wang, S. Lu, X.-Q. Hao, X. Li, B. Xu, X. Li, Nat. Commun. 2018, 9, 4575.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.