Selenium-Based Catalytic Scavengers for Concurrent Scavenging of H2S and Reactive Oxygen Species
Dr. Xiang Ni
Department of Chemistry, Brown University, Providence, RI 02912 USA
Search for more papers by this authorDr. Eizo Marutani
Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
Search for more papers by this authorMeg Shieh
Department of Chemistry, Brown University, Providence, RI 02912 USA
Search for more papers by this authorYannie Lam
Department of Chemistry, Brown University, Providence, RI 02912 USA
Search for more papers by this authorProf. Dr. Fumito Ichinose
Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Ming Xian
Department of Chemistry, Brown University, Providence, RI 02912 USA
Search for more papers by this authorDr. Xiang Ni
Department of Chemistry, Brown University, Providence, RI 02912 USA
Search for more papers by this authorDr. Eizo Marutani
Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
Search for more papers by this authorMeg Shieh
Department of Chemistry, Brown University, Providence, RI 02912 USA
Search for more papers by this authorYannie Lam
Department of Chemistry, Brown University, Providence, RI 02912 USA
Search for more papers by this authorProf. Dr. Fumito Ichinose
Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Ming Xian
Department of Chemistry, Brown University, Providence, RI 02912 USA
Search for more papers by this authorAbstract
Hydrogen sulfide (H2S) is an endogenous gasotransmitter that plays important roles in redox signaling. H2S overproduction has been linked to a variety of disease states and therefore, H2S-depleting agents, such as scavengers, are needed to understand the significance of H2S-based therapy. It is known that elevated H2S can induce oxidative stress with elevated reactive oxygen species (ROS) formation, such as in H2S acute intoxication. We explored the possibility of developing catalytic scavengers to simultaneously remove H2S and ROS. Herein, we studied a series of selenium-based molecules as catalytic H2S/H2O2 scavengers. Inspired by the high reactivity of selenoxide compounds towards H2S, 14 diselenide/monoselenide compounds were tested. Several promising candidates such as S6 were identified. Their activities in buffers, as well as in plasma- and cell lysate-containing solutions were evaluated. We also studied the reaction mechanism of this scavenging process. Finally, the combination of the diselenide catalyst and photosensitizers was used to achieve light-induced H2S removal. These Se-based scavengers can be useful tools for understanding H2S/ROS regulations.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202317487-sup-0001-misc_information.pdf1.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aR. Wang, Physiol. Rev. 2012, 92, 791–896;
- 1bL. Li, P. Rose, P. K. Moore, Annu. Rev. Pharmacol. Toxicol. 2011, 51, 169–187.
- 2
- 2aE. M. Bos, H. van Goor, J. A. Joles, M. Whiteman, H. G. Leuvenink, Br. J. Pharmacol. 2015, 172, 1479–1493;
- 2bA. Papapetropoulos, M. Whiteman, G. Cirino, Br. J. Pharmacol. 2015, 172, 1633–1637;
- 2cJ. L. Wallace, R. Wang, Nat. Rev. Drug Discovery 2015, 14, 329–345;
- 2dC. Szabo, A. Papapetropoulos, Pharmacol. Rev. 2017, 69, 497–564.
- 3
- 3aY. Zheng, B. Yu, L. K. De La Cruz, M. Roy Choudhury, A. Anifowose, B. Wang, Med. Res. Rev. 2018, 38, 57–100;
- 3bC. Levinn, M. Cerda, M. Pluth, Antioxid. Redox Signaling 2020, 32, 96–109;
- 3cX. Ni, S. S. Kelly, S. Xu, M. Xian, Acc. Chem. Res. 2021, 54, 3968–3978.
- 4Y. Wang, X. Ni, R. Chadha, C. McCartney, Y. Lam, B. Brummett, G. Ramush, M. Xian, Antioxid. Redox Signaling 2022, 36, 294–308.
- 5
- 5aH. Lin, Y. Yu, L. Zhu, N. Lai, L. Zhang, Y. Guo, X. Lin, D. Yang, N. Ren, Z. Zhu, Q. Dong, Redox. Biol. 2023, 59, 102601;
- 5bH. Sun, Z. Wu, X. Nie, X. Wang, J. Bian, J. Adv. Res. 2021, 27, 127–135.
- 6C. Yang, Y. Wang, E. Marutani, T. Ida, X. Ni, S. Xu, W. Chen, H. Zhang, T. Akaike, F. Ichinose, M. Xian, Angew. Chem. Int. Ed. 2019, 58, 10898–10902.
- 7Y. Miyazaki, E. Marutani, T. Ikeda, X. Ni, K. Hanaoka, M. Xian, F. Ichinose, Toxicol. Sci. 2021, 183, 393–403.
- 8I. Ismail, Z. Chen, L. Sun, X. Ji, H. Ye, X. Kang, H. Huang, H. Song, S. G. Bolton, Z. Xi, M. Pluth, L. Yi, Chem. Sci. 2020, 11, 7823–7828.
- 9K. Zuhra, T. Panagaki, E. Randi, F. Augsburger, M. Blondel, G. Friocourt, Y. Herault, C. Szabo, Biochem. Pharmacol. 2020, 182, 114267.
- 10
- 10aY. Li, J. Zhou, L. Wang, Z. Xie, ACS Appl. Mater. Interfaces 2020, 12, 30213–30220;
- 10bX. Pan, Y. Qi, Z. Du, J. He, S. Yao, W. Lu, K. Ding, M. Zhou, J. Nanobiotechnol. 2021, 19, 392;
- 10cC. Wang, F. Xue, M. Wang, L. An, D. Wu, Q. Tian, ACS Appl. Mater. Interfaces 2022, 14, 38604–38616;
- 10dQ. Tian, L. An, Q. Tian, J. Lin, S. Yang, Theranostics 2020, 10, 4101–4115;
- 10eY. Li, W. Chen, Y. Qi, S. Wang, L. Li, W. Li, T. Xie, H. Zhu, Z. Tang, M. Zhou, Small 2020, 16, 2001356.
- 11
- 11aM. A. Eghbal, P. S. Pennefather, P. J. O'Brien, Toxicology 2004, 203, 69–76;
- 11bJ. Jiang, A. Chan, S. Ali, A. Saha, K. J. Haushalter, W. L. Lam, M. Glasheen, J. Parker, M. Brenner, S. B. Mahon, H. H. Patel, R. Ambasudhan, S. A. Lipton, R. B. Pilz, G. R. Boss, Sci. Rep. 2016, 6, 20831.
- 12S. Carballal, M. Trujillo, E. Cuevasanta, S. Bartesaghi, M. Moller, L. Folkes, M. Garcia-Bereguiain, C. Gutierrez-Merino, P. Wardman, A. Denicola, R. Radi, B. Alvarez, Free Radical Biol. Med. 2011, 50, 196–205.
- 13H. Reich, R. Hondal, ACS Chem. Biol. 2016, 11, 821–841.
- 14Z. Lou, P. Li, K. Han, Acc. Chem. Res. 2015, 48, 1358–1368.
- 15A. Kunwar, K. I. Priyadarsini, in Organoselenium Compounds in Biology and Medicine (Eds.: V. K. Jain, K. I. Priyadarsini), Royal Society of Chemistry, Cambridge, 2017, pp. 321–322.
- 16H. Xiao, K. L. Parkin, Nutr. Cancer 2006, 55, 210–223.
- 17H. Ren, Z. Huang, H. Yang, H. Xu, X. Zhang, ChemPhysChem 2015, 16, 523–527.
- 18J. R. Marshall, R. F. Burk, R. Ondracek, K. E. Hill, M. Perloff, W. Davis, R. Pili, S. George, R. Bergan, Oncotarget 2017, 8, 26312–26322.
- 19
- 19aC. Storkey, D. I. Pattison, J. M. White, C. H. Schiesser, M. J. Davie, Chem. Res. Toxicol. 2012, 25, 2589–2599;
- 19bT. Zacharias, K. Flouda, T. A. Jepps, B. Gammelgaard, C. H. Schiesser, M. J. Davies, Biochem. Pharmacol. 2020, 173, 113631.
- 20
- 20aG. V. Botteselle, W. C. Elias, L. Bettanin, R. F. S. Canto, D. N. O. Salin, F. A. R. Barbosa, S. Saba, H. Gallardo, G. Ciancaleoni, J. B. Domingos, J. Rafique, A. L. Braga, Molecules 2021, 26, 4446;
- 20bM. Iwaoka, S. Tomoda, J. Am. Chem. Soc. 1994, 116, 2557–2561.
- 21W. Chen, E. W. Rosser, T. Matsunaga, A. Pacheco, T. Akaike, M. Xian, Angew. Chem. Int. Ed. 2015, 54, 13961–13965.
- 22
- 22aB. Peng, C. Zhang, E. Marutani, A. Pacheco, W. Chen, F. Ichinose, M. Xian, Org. Lett. 2015, 17, 1541–1544;
- 22bC. W. Nogueira, G. Zeni, J. B. T. Rocha, Chem. Rev. 2004, 104, 6255–6286;
- 22cG. Ribaudo, M. Bellanda, I. Menegazzo, L. P. Wolters, M. Bortoli, G. Ferrer-Sueta, G. Zagotto, L. Orian, Chem. Eur. J. 2017, 23, 2405–2422.
- 23T. Li, H. Xu, Cell Rep. 2020, 1, 100111.
- 24M. Li, J. Xia, R. Tian, J. Wang, J. Fan, J. Du, S. Long, X. Song, J. W. Foley, X. Peng, J. Am. Chem. Soc. 2018, 140, 14851–14859.
- 25
- 25aM. C. DeRosa, R. J. Crutchley, Coord. Chem. Rev. 2002, 233–234, 351–371;
- 25bR. W. Redmond, J. N. Gamlin, Photochem. Photobiol. 1999, 70, 391–475;
- 25cS. Verma, U. W. Sallum, H. Athar, L. Rosenblum, J. W. Foley, T. Hasan, Photochem. Photobiol. 2009, 85, 111–118.
- 26B. Fan, W. Peng, Y. Zhang, P. Liu, J. Shen, Biomater. Sci. 2023, 11, 4930–4937.
- 27S. G. Bolton, M. D. Pluth, Free Radical Biol. Med. 2022, 185, 46–51.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.