Multifunctional Trifluoroborate Additive for Simultaneous Carrier Dynamics Governance and Defects Passivation to Boost Efficiency and Stability of Inverted Perovskite Solar Cells
Jun Li
Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Lisha Xie
Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
These authors contributed equally to this work.
Search for more papers by this authorGuanhao Liu
Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU—CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
These authors contributed equally to this work.
Search for more papers by this authorZhenwei Pu
Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
Contribution: Data curation (equal)
Search for more papers by this authorXinyu Tong
Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
Contribution: Data curation (equal)
Search for more papers by this authorShuncheng Yang
Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
Contribution: Data curation (equal)
Search for more papers by this authorMengjin Yang
Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
Contribution: Funding acquisition (equal), Investigation (equal)
Search for more papers by this authorJian Liu
Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
Contribution: Data curation (equal)
Search for more papers by this authorJiujiang Chen
Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
Contribution: Data curation (equal)
Search for more papers by this authorYuanyuan Meng
Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
Contribution: Data curation (equal)
Search for more papers by this authorYing Wang
Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU—CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Contribution: Formal analysis (equal)
Search for more papers by this authorCorresponding Author
Tao Wang
School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018 China
Contribution: Project administration (equal)
Search for more papers by this authorCorresponding Author
Ziyi Ge
Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
Search for more papers by this authorJun Li
Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Lisha Xie
Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
These authors contributed equally to this work.
Search for more papers by this authorGuanhao Liu
Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU—CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
These authors contributed equally to this work.
Search for more papers by this authorZhenwei Pu
Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
Contribution: Data curation (equal)
Search for more papers by this authorXinyu Tong
Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
Contribution: Data curation (equal)
Search for more papers by this authorShuncheng Yang
Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
Contribution: Data curation (equal)
Search for more papers by this authorMengjin Yang
Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
Contribution: Funding acquisition (equal), Investigation (equal)
Search for more papers by this authorJian Liu
Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
Contribution: Data curation (equal)
Search for more papers by this authorJiujiang Chen
Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
Contribution: Data curation (equal)
Search for more papers by this authorYuanyuan Meng
Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
Contribution: Data curation (equal)
Search for more papers by this authorYing Wang
Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU—CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Contribution: Formal analysis (equal)
Search for more papers by this authorCorresponding Author
Tao Wang
School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018 China
Contribution: Project administration (equal)
Search for more papers by this authorCorresponding Author
Ziyi Ge
Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
Search for more papers by this authorAbstract
The main obstacles to promoting the commercialization of perovskite solar cells (PSCs) include their record power conversion efficiency (PCE), which still remains below the Shockley–Queisser limit, and poor long-term stability, attributable to crystallographic defects in perovskite films and open-circuit voltage (Voc) loss in devices. In this study, potassium (4-tert-butoxycarbonylpiperazin-1-yl) methyl trifluoroborate (PTFBK) was employed as a multifunctional additive to target and modulate bulk perovskite defects and carrier dynamics of PSCs. Apart from simultaneously passivating anionic and cationic defects, PTFBK could also optimize the energy-level alignment of devices and weaken the interaction between carriers and longitudinal optical phonons, resulting in a carrier lifetime of greater than 3 μs. Furthermore, it inhibited non-radiative recombination and improved the crystallization capacity in the target perovskite film. Hence, the target rigid and flexible p-i-n PSCs yielded champion PCEs of 24.99 % and 23.48 %, respectively. More importantly, due to hydrogen bonding between formamidinium and fluorine, the target devices exhibited remarkable thermal, humidity, and operational tracking at maximum power point stabilities. The reduced Young's modulus and residual stress in the perovskite layer also provided excellent bending stability for flexible target devices.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202316898-sup-0001-misc_information.pdf2.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. Min, D. Y. Lee, J. Kim, G. Kim, K. S. Lee, J. Kim, M. J. Paik, Y. K. Kim, K. S. Kim, M. G. Kim, T. J. Shin, S. Il Seok, Nature 2021, 598, 444–450.
- 2W. Peng, K. Mao, F. Cai, H. Meng, Z. Zhu, T. Li, S. Yuan, Z. Xu, X. Feng, J. Xu, M. D. McGehee, J. Xu, Science 2023, 379, 683–690.
- 3Q. Tan, Z. Li, G. Luo, X. Zhang, B. Che, G. Chen, H. Gao, D. He, G. Ma, J. Wang, J. Xiu, H. Yi, T. Chen, Z. He, Nature 2023, 620, 545–551.
- 4X. Zheng, Z. Li, Y. Zhang, M. Chen, T. Liu, C. Xiao, D. Gao, J. B. Patel, D. Kuciauskas, A. Magomedov, R. A. Scheidt, X. Wang, S. P. Harvey, Z. Dai, C. Zhang, D. Morales, H. Pruett, B. M. Wieliczka, A. R. Kirmani, N. P. Padture, K. R. Graham, Y. Yan, M. K. Nazeeruddin, M. D. McGehee, Z. Zhu, J. M. Luther, Nat. Energy 2023, 8, 462–472.
- 5J. Xia, P. Luizys, M. Daskeviciene, C. Xiao, K. Kantminiene, V. Jankauskas, K. Rakstys, G. Kreiza, X. Gao, H. Kanda, K. G. Brooks, I. R. Alwani, Q. U. Ain, J. Zou, G. Shao, R. Hu, Z. Qiu, A. Slonopas, A. M. Asiri, Y. Zhang, P. J. Dyson, V. Getautis, M. K. Nazeeruddin, Adv. Mater. 2023, 35, 2300720.
- 6J. He, W. Sheng, J. Yang, Y. Zhong, Y. Su, L. Tan, Y. Chen, Energy Environ. Sci. 2023, 16, 629–640.
- 7T. Yang, W. Zhao, Y. Yang, W. Huang, K. Zhao, S. (Frank) Liu, Adv. Mater. 2023, 35, 2211006.
- 8H. Zhang, C. Zhao, J. Yao, W. C. H. Choy, Angew. Chem. Int. Ed. 2023, 62, e202219307.
- 9R. He, W. Wang, Z. Yi, F. Lang, C. Chen, J. Luo, J. Zhu, J. Thiesbrummel, S. Shah, K. Wei, Y. Luo, C. Wang, H. Lai, H. Huang, J. Zhou, B. Zou, X. Yin, S. Ren, X. Hao, L. Wu, J. Zhang, J. Zhang, M. Stolterfoht, F. Fu, W. Tang, D. Zhao, Nature 2023, 618, 80–86.
- 10H. Zhang, L. Pfeifer, S. M. Zakeeruddin, J. Chu, M. Grätzel, Nat. Chem. Rev. 2023, 7, 632–652.
- 11L. Chen, J. Chen, C. Wang, H. Ren, H. Hou, Y. Zhang, Y. Li, X. Gao, J. Tang, Small 2023, 19, 2207817.
- 12B. Chen, P. N. Rudd, S. Yang, Y. Yuan, J. Huang, Chem. Soc. Rev. 2019, 48, 3842–3867.
- 13Q. Tai, P. You, H. Sang, Z. Liu, C. Hu, H. L. W. Chan, F. Yan, Nat. Commun. 2016, 7, 11105.
- 14N. Aristidou, C. Eames, I. Sanchez-Molina, X. Bu, J. Kosco, M. S. Islam, S. A. Haque, Nat. Commun. 2017, 8, 15218.
- 15D. Meggiolaro, E. Mosconi, F. De Angelis, ACS Energy Lett. 2019, 4, 779–785.
- 16L. Xie, J. Liu, J. Li, C. Liu, Z. Pu, P. Xu, Y. Wang, Y. Meng, M. Yang, Z. Ge, Adv. Mater. 2023, 2302752.
- 17S. Sánchez, L. Pfeifer, N. Vlachopoulos, A. Hagfeldt, Chem. Soc. Rev. 2021, 50, 7108–7131.
- 18H. Zhang, K. Darabi, N. Y. Nia, A. Krishna, P. Ahlawat, B. Guo, M. H. S. Almalki, T.-S. Su, D. Ren, V. Bolnykh, L. A. Castriotta, M. Zendehdel, L. Pan, S. S. Alonso, R. Li, S. M. Zakeeruddin, A. Hagfeldt, U. Rothlisberger, A. Di Carlo, A. Amassian, M. Grätzel, Nat. Commun. 2022, 13, 89.
- 19H. Zhang, F. T. Eickemeyer, Z. Zhou, M. Mladenović, F. Jahanbakhshi, L. Merten, A. Hinderhofer, M. A. Hope, O. Ouellette, A. Mishra, P. Ahlawat, D. Ren, T.-S. Su, A. Krishna, Z. Wang, Z. Dong, J. Guo, S. M. Zakeeruddin, F. Schreiber, A. Hagfeldt, L. Emsley, U. Rothlisberger, J. V. Milić, M. Grätzel, Nat. Commun. 2021, 12, 3383.
- 20Y. Kong, W. Shen, H. Cai, W. Dong, C. Bai, J. Zhao, F. Huang, Y. Cheng, J. Zhong, Adv. Funct. Mater. 2023, 33, 2300932.
- 21D. H. Kim, G. S. Han, W. M. Seong, J. Lee, B. J. Kim, N. Park, K. S. Hong, S. Lee, H. S. Jung, ChemSusChem 2015, 8, 2392–2398.
- 22C. Zhang, H. Wang, H. Li, Q. Zhuang, C. Gong, X. Hu, W. Cai, S. Zhao, J. Chen, Z. Zang, J. Energy Chem. 2021, 63, 452–460.
- 23Y.-H. Lin, N. Sakai, P. Da, J. Wu, H. C. Sansom, A. J. Ramadan, S. Mahesh, J. Liu, R. D. J. Oliver, J. Lim, L. Aspitarte, K. Sharma, P. K. Madhu, A. B. Morales-Vilches, P. K. Nayak, S. Bai, F. Gao, C. R. M. Grovenor, M. B. Johnston, J. G. Labram, J. R. Durrant, J. M. Ball, B. Wenger, B. Stannowski, H. J. Snaith, Science 2020, 369, 96–102.
- 24R. Su, Z. Xu, J. Wu, D. Luo, Q. Hu, W. Yang, X. Yang, R. Zhang, H. Yu, T. P. Russell, Q. Gong, W. Zhang, R. Zhu, Nat. Commun. 2021, 12, 2479.
- 25A. Kausar, A. Sattar, C. Xu, S. Zhang, Z. Kang, Y. Zhang, Chem. Soc. Rev. 2021, 50, 2696–2736.
- 26D.-Y. Son, S.-G. Kim, J.-Y. Seo, S.-H. Lee, H. Shin, D. Lee, N.-G. Park, J. Am. Chem. Soc. 2018, 140, 1358–1364.
- 27J. Li, L. Xie, Z. Pu, C. Liu, M. Yang, Y. Meng, B. Han, S. Bu, Y. Wang, X. Zhang, T. Wang, Z. Ge, Adv. Funct. Mater. 2023, 33, 2301956.
- 28K. Iwasaki, S. Tsuzuki, T. Tsuda, S. Kuwabata, J. Phys. Chem. C 2018, 122, 3286–3294.
- 29Y. Rao, Z. Li, D. Liu, C. Chen, X. Wang, G. Cui, S. Pang, ACS Appl. Mater. Interfaces 2021, 13, 20043–20050.
- 30L. Bai, F. Yao, R. Wang, B. Liu, D. He, Q. Zhou, W. Wang, C. Xu, X. Hu, S. Chen, Q. Song, T. Zhou, D. Lee, P. Zhao, C. Chen, H. Yang, Q. Lin, Z. Zang, J. Chen, Sci. China Mater. 2022, 65, 3368–3381.
- 31X. Meng, Y. Li, Y. Qu, H. Chen, N. Jiang, M. Li, D. Xue, J. Hu, H. Huang, S. Yang, Angew. Chem. Int. Ed. 2021, 60, 3693–3698.
- 32S. Hu, P. Zhao, K. Nakano, R. D. J. Oliver, J. Pascual, J. A. Smith, T. Yamada, M. A. Truong, R. Murdey, N. Shioya, T. Hasegawa, M. Ehara, M. B. Johnston, K. Tajima, Y. Kanemitsu, H. J. Snaith, A. Wakamiya, Adv. Mater. 2023, 35, 2208320.
- 33Q. Song, H. Gong, F. Sun, M. Li, T. Zhu, C. Zhang, F. You, Z. He, D. Li, C. Liang, Small 2023, 19, 2208260.
- 34B. Chang, B. Li, Z. Wang, H. Li, L. Wang, L. Pan, Z. Li, L. Yin, Adv. Funct. Mater. 2022, 32, 2107710.
- 35X. Yu, Y. Lv, B. Xue, L. Wang, W. Hu, X. Liu, S. Yang, W.-H. Zhang, Nano Energy 2022, 93, 106856.
- 36R. Sun, Q. Tian, M. Li, H. Wang, J. Chang, W. Xu, Z. Li, Y. Pan, F. Wang, T. Qin, Adv. Funct. Mater. 2023, 33, 2210071.
- 37X. Sun, L. Shi, Y. Zhang, H. Yuan, K. Zhang, L. Duan, Q. Li, Z. Huang, X. Ban, D. Zhang, Chem. Eng. J. 2023, 453, 139698.
- 38M. Li, R. Sun, J. Chang, J. Dong, Q. Tian, H. Wang, Z. Li, P. Yang, H. Shi, C. Yang, Z. Wu, R. Li, Y. Yang, A. Wang, S. Zhang, F. Wang, W. Huang, T. Qin, Nat. Commun. 2023, 14, 573.
- 39S. Tan, T. Huang, I. Yavuz, R. Wang, M. H. Weber, Y. Zhao, M. Abdelsamie, M. E. Liao, H.-C. Wang, K. Huynh, K.-H. Wei, J. Xue, F. Babbe, M. S. Goorsky, J.-W. Lee, C. M. Sutter-Fella, Y. Yang, J. Am. Chem. Soc. 2021, 143, 6781–6786.
- 40Y. Wang, Z. Zhang, Y. Lan, Q. Song, M. Li, Y. Song, Angew. Chem. Int. Ed. 2021, 60, 8673–8677.
- 41X. Wang, Z. Ying, J. Zheng, X. Li, Z. Zhang, C. Xiao, Y. Chen, M. Wu, Z. Yang, J. Sun, J.-R. Xu, J. Sheng, Y. Zeng, X. Yang, G. Xing, J. Ye, Nat. Commun. 2023, 14, 2166.
- 42Y. Yan, R. Wang, Q. Dong, Y. Yin, L. Zhang, Z. Su, C. Wang, J. Feng, M. Wang, J. Liu, H. Ma, Y. Feng, W. Shang, Z. Wang, M. Pei, Y. Wang, S. Jin, J. Bian, X. Gao, S. Liu, Y. Shi, Energy Environ. Sci. 2022, 15, 5168–5180.
- 43X. Hu, X. Meng, X. Yang, Z. Huang, Z. Xing, P. Li, L. Tan, M. Su, F. Li, Y. Chen, Y. Song, Sci. Bull. 2021, 66, 527–535.
- 44A. A. Zhumekenov, M. I. Saidaminov, M. A. Haque, E. Alarousu, S. P. Sarmah, B. Murali, I. Dursun, X.-H. Miao, A. L. Abdelhady, T. Wu, O. F. Mohammed, O. M. Bakr, ACS Energy Lett. 2016, 1, 32–37.
- 45L. Shamsuddin, I. M. Noor, I. Albinsson, B. E. Mellander, A. K. Arof, Mol. Cryst. Liq. Cryst. 2017, 655, 181–194.
- 46J.-W. Lee, S.-H. Bae, Y.-T. Hsieh, N. De Marco, M. Wang, P. Sun, Y. Yang, Chem 2017, 3, 290–302.
- 47C. Ma, M.-C. Kang, S.-H. Lee, S. J. Kwon, H.-W. Cha, C.-W. Yang, N.-G. Park, Joule 2022, 6, 2626–2643.
- 48H. Wang, C. Zhu, L. Liu, S. Ma, P. Liu, J. Wu, C. Shi, Q. Du, Y. Hao, S. Xiang, H. Chen, P. Chen, Y. Bai, H. Zhou, Y. Li, Q. Chen, Adv. Mater. 2019, 31, 1904408.
- 49C. Zhu, X. Niu, Y. Fu, N. Li, C. Hu, Y. Chen, X. He, G. Na, P. Liu, H. Zai, Y. Ge, Y. Lu, X. Ke, Y. Bai, S. Yang, P. Chen, Y. Li, M. Sui, L. Zhang, H. Zhou, Q. Chen, Nat. Commun. 2019, 10, 815.
- 50R. Wang, X. Li, J. Qi, C. Su, J. Yang, S. Yang, M. Yuan, T. He, Adv. Mater. 2023, 2304149.
- 51P. Cui, D. Wei, J. Ji, H. Huang, E. Jia, S. Dou, T. Wang, W. Wang, M. Li, Nat. Energy 2019, 4, 150–159.
- 52T. Zhao, C.-C. Chueh, Q. Chen, A. Rajagopal, A. K.-Y. Jen, ACS Energy Lett. 2016, 1, 757–763.
- 53X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai, Y. Lin, H. Wei, X. C. Zeng, J. Huang, Nat. Energy 2017, 2, 17102.
- 54Y. Wu, Q. Wang, Y. Chen, W. Qiu, Q. Peng, Energy Environ. Sci. 2022, 15, 4700–4709.
- 55T. Pan, W. Zhou, Q. Wei, Z. Peng, H. Wang, X. Jiang, Z. Zang, H. Li, D. Yu, Q. Zhou, M. Pan, W. Zhou, Z. Ning, Adv. Mater. 2023, 2208522.
- 56J. S. Manser, P. V. Kamat, Nat. Photonics 2014, 8, 737–743.
- 57M. T. Trinh, X. Wu, D. Niesner, X.-Y. Zhu, J. Mater. Chem. A 2015, 3, 9285–9290.
- 58I. Dursun, P. Maity, J. Yin, B. Turedi, A. A. Zhumekenov, K. J. Lee, O. F. Mohammed, O. M. Bakr, Adv. Energy Mater. 2019, 9, 1900084.
- 59M. B. Price, J. Butkus, T. C. Jellicoe, A. Sadhanala, A. Briane, J. E. Halpert, K. Broch, J. M. Hodgkiss, R. H. Friend, F. Deschler, Nat. Commun. 2015, 6, 8420.
- 60S. Narra, E. Jokar, O. Pearce, C.-Y. Lin, A. Fathi, E. W.-G. Diau, J. Phys. Chem. Lett. 2020, 11, 5699–5704.
- 61H. Chen, Y. Wang, Y. Fan, Y. Chen, Y. Miao, Z. Qin, X. Wang, X. Liu, K. Zhu, F. Gao, Y. Zhao, Natl. Sci. Rev. 2022, 9, nwac127.
- 62X. Yang, Y. Fu, R. Su, Y. Zheng, Y. Zhang, W. Yang, M. Yu, P. Chen, Y. Wang, J. Wu, D. Luo, Y. Tu, L. Zhao, Q. Gong, R. Zhu, Adv. Mater. 2020, 32, 2002585.
- 63H. Li, Q. Wang, Y. Oteki, C. Ding, D. Liu, Y. Guo, Y. Li, Y. Wei, D. Wang, Y. Yang, T. Masuda, M. Chen, Z. Zhang, T. Sogabe, S. Hayase, Y. Okada, S. Iikubo, Q. Shen, Adv. Mater. 2023, 35, 2301834.
- 64Y. Hou, X. Du, S. Scheiner, D. P. McMeekin, Z. Wang, N. Li, M. S. Killian, H. Chen, M. Richter, I. Levchuk, N. Schrenker, E. Spiecker, T. Stubhan, N. A. Luechinger, A. Hirsch, P. Schmuki, H.-P. Steinrück, R. H. Fink, M. Halik, H. J. Snaith, C. J. Brabec, Science 2017, 358, 1192–1197.
- 65Y. Wu, G. Xu, J. Xi, Y. Shen, X. Wu, X. Tang, J. Ding, H. Yang, Q. Cheng, Z. Chen, Y. Li, Y. Li, Joule 2023, 7, 398–415.
- 66L. Xie, S. Du, J. Li, C. Liu, Z. Pu, X. Tong, J. Liu, Y. Wang, Y. Meng, M. Yang, W. Li, Z. Ge, Energy Environ. Sci. 2023, 16, 5423–5433.
- 67J. Wang, J. Zhang, Y. Zhou, H. Liu, Q. Xue, X. Li, C.-C. Chueh, H.-L. Yip, Z. Zhu, A. K. Y. Jen, Nat. Commun. 2020, 11, 177.
- 68J. Yang, C. Liu, C. Cai, X. Hu, Z. Huang, X. Duan, X. Meng, Z. Yuan, L. Tan, Y. Chen, Adv. Energy Mater. 2019, 9, 1900198.
- 69D. Gao, B. Li, Z. Li, X. Wu, S. Zhang, D. Zhao, X. Jiang, C. Zhang, Y. Wang, Z. Li, N. Li, S. Xiao, W. C. H. Choy, A. K. -Y Jen, S. Yang, Z. Zhu, Adv. Mater. 2023, 35, 2206387.
- 70X. Ji, L. Bi, Q. Fu, B. Li, J. Wang, S. Y. Jeong, K. Feng, S. Ma, Q. Liao, F. R. Lin, H. Y. Woo, L. Lu, A. K. -Y Jen, X. Guo, Adv. Mater. 2023, 2303665.
- 71X. Liu, D. Luo, Z.-H. Lu, J. S. Yun, M. Saliba, S. I. Seok, W. Zhang, Nat. Chem. Rev. 2023, 7, 462–479.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.