Manipulated Fluoro-Ether Derived Nucleophilic Decomposition Products for Mitigating Polarization-Induced Capacity Loss in Li-Rich Layered Cathode
Baodan Zhang
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen, 361005 P. R. China
Search for more papers by this authorHaitang Zhang
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorHaiyan Luo
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorHaiming Hua
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorXiaohong Wu
Fujian Provincial Key Laboratory of Functional Materials and Applications, Institute of Advanced Energy Materials, School of Materials Science and Engineering, Xiamen University of Technology, Xiamen, 361024 P. R. China
Search for more papers by this authorYilong Chen
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorShiyuan Zhou
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorJianhua Yin
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorKang Zhang
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorHong-Gang Liao
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorQingsong Wang
Bavarian Center for Battery Technology (BayBatt), Department of Chemistry, University of Bayreuth, 95447 Bayreuth, Germany
Search for more papers by this authorCorresponding Author
Yeguo Zou
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen, 361005 P. R. China
Search for more papers by this authorCorresponding Author
Yu Qiao
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen, 361005 P. R. China
Search for more papers by this authorShi-Gang Sun
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorBaodan Zhang
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen, 361005 P. R. China
Search for more papers by this authorHaitang Zhang
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorHaiyan Luo
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorHaiming Hua
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorXiaohong Wu
Fujian Provincial Key Laboratory of Functional Materials and Applications, Institute of Advanced Energy Materials, School of Materials Science and Engineering, Xiamen University of Technology, Xiamen, 361024 P. R. China
Search for more papers by this authorYilong Chen
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorShiyuan Zhou
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorJianhua Yin
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorKang Zhang
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorHong-Gang Liao
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorQingsong Wang
Bavarian Center for Battery Technology (BayBatt), Department of Chemistry, University of Bayreuth, 95447 Bayreuth, Germany
Search for more papers by this authorCorresponding Author
Yeguo Zou
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen, 361005 P. R. China
Search for more papers by this authorCorresponding Author
Yu Qiao
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen, 361005 P. R. China
Search for more papers by this authorShi-Gang Sun
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorAbstract
Electrolyte engineering is a fascinating choice to improve the performance of Li-rich layered oxide cathodes (LRLO) for high-energy lithium-ion batteries. However, many existing electrolyte designs and adjustment principles tend to overlook the unique challenges posed by LRLO, particularly the nucleophilic attack. Here, we introduce an electrolyte modification by locally replacing carbonate solvents in traditional electrolytes with a fluoro-ether. By benefit of the decomposition of fluoro-ether under nucleophilic O-related attacks, which delivers an excellent passivation layer with LiF and polymers, possessing rigidity and flexibility on the LRLO surface. More importantly, the fluoro-ether acts as “sutures”, ensuring the integrity and stability of both interfacial and bulk structures, which contributed to suppressing severe polarization and enhancing the cycling capacity retention from 39 % to 78 % after 300 cycles for the 4.8 V-class LRLO. This key electrolyte strategy with comprehensive analysis, provides new insights into addressing nucleophilic challenge for high-energy anionic redox related cathode systems.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202316790-sup-0001-misc_information.pdf10 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aZ. Cui, A. Manthiram, Angew. Chem. Int. Ed. 2023, 62, e202307243;
- 1bS. Jiao, J. Wang, Y.-S. Hu, X. Yu, H. Li, ACS Energy Lett. 2023, 8, 3025–3037.
- 2
- 2aG. Assat, J. M. Tarascon, Nat. Energy 2018, 3, 373–386;
- 2bW. Zuo, M. Luo, X. Liu, J. Wu, H. Liu, J. Li, M. Winter, R. Fu, W. Yang, Y. Yang, Energy Environ. Sci. 2020, 13, 4450–4497.
- 3
- 3aG. H. Lee, V. W. h. Lau, W. Yang, Y. M. Kang, Adv. Energy Mater. 2021, 11, 2003227;
- 3bK. Luo, M. R. Roberts, N. Guerrini, N. Tapia-Ruiz, R. Hao, F. Massel, D. M. Pickup, S. Ramos, Y. S. Liu, J. Guo, A. V. Chadwick, L. C. Duda, P. G. Bruce, J. Am. Chem. Soc. 2016, 138, 11211–11218.
- 4S.-K. Jung, K. Kang, Nat. Energy 2017, 2, 912–913.
- 5
- 5aZ. Chen, S. Kang, J. Peng, Y. Cai, Y. Huang, Q. Pan, F. Zheng, H. Wang, Q. Li, S. Hu, ACS Energy Lett. 2023, 8, 417–419;
- 5bB. Zhang, L. Wang, X. Wang, S. Zhou, A. Fu, Y. Yan, Q. Wang, Q. Xie, D. Peng, Y. Qiao, S.-G. Sun, Energy Storage Mater. 2022, 53, 492–504.
- 6
- 6aJ. Langdon, Z. Cui, A. Manthiram, ACS Energy Lett. 2021, 6, 3809–3816;
- 6bG. L. Xu, Q. Liu, K. K. S. Lau, Y. Liu, X. Liu, H. Gao, X. W. Zhou, M. H. Zhuang, Y. Ren, J. D. Li, M. H. Shao, M. G. Ouyang, F. Pan, Z. H. Chen, K. Amine, G. H. Chen, Nat. Energy 2019, 4, 484–494.
- 7
- 7aJ. T. Zhao, X. Zhang, Y. Liang, Z . Han, S. Q. Liu, W. Q. Chu, H. J. Yu, ACS Energy Lett. 2021, 6, 2552–2564;
- 7bX. W. Yu, A. Manthiram, Energy Environ. Sci. 2018, 11, 527–543.
- 8
- 8aZ. Xiao, J. D. Liu, G. L. Fan, M. Yu, J. X. Liu, X. L. Gou, M. J. Yuan, F. Y. Cheng, Mater. Chem. Front. 2020, 4, 1689–1696;
- 8bY. Lei, J. Ni, Z. Hu, Z. Wang, F. Gui, B. Li, P. Ming, C. Zhang, Y. Elias, D. Aurbach, Q. Xiao, Adv. Energy Mater. 2020, 10, 2002506;
- 8cJ. T. Zhao, Y. Liang, X. Zhang, Z. H. Zhang, E. R. Wang, S. M. He, B. Y. Wang, Z. J. Han, J. Lu, K. Amine, H. J. Yu, Adv. Funct. Mater. 2021, 31, 2009192.
- 9
- 9aY. X. Li, W. K. Li, R. Shimizu, D. Y. Cheng, H. N. Nguyen, J. Paulsen, S. Kumakura, M. H. Zhang, Y. S. Meng, Adv. Energy Mater. 2022, 12, 2103033;
- 9bH. Jia, W. Xu, TRECHEM 2022, 4, 627–642.
- 10W. Yang, Nat. Energy 2018, 3, 619–620.
- 11
- 11aX. Li, Y. Qiao, S. Guo, Z. Xu, H. Zhu, X. Zhang, Y. Yuan, P. He, M. Ishida, H. Zhou, Adv. Mater. 2018, 30, 1705197;
- 11bC. Chen, M. Song, L. Lu, L. Yue, T. Huang, A. Yu, Batteries & Supercaps 2021, 4, 850–859.
- 12L. A. Kaufman, B. D. McCloskey, Chem. Mater. 2021, 33, 4170–4176.
- 13B. L. D. Rinkel, J. P. Vivek, N. Garcia-Araez, C. P. Grey, Energy Environ. Sci. 2022, 15, 3416–3438.
- 14
- 14aS. Sharifi-Asl, J. Lu, K. Amine, R. Shahbazian-Yassar, Adv. Energy Mater. 2019, 9, 1900551;
- 14bH. Zhang, H. Liu, L. F. J. Piper, M. S. Whittingham, G. Zhou, Chem. Rev. 2022, 122, 5641–5681.
- 15
- 15aZ. Cui, A. Manthiram, Angew. Chem. Int. Ed. 2023, 62, e202307243;
- 15bP. Li, H. Zhang, J. Lu, G. Li, Angew. Chem. Int. Ed. 2023, 62, e202216312.
- 16
- 16aJ. Xie, S. Y. Sun, X. Chen, L. P. Hou, B. Q. Li, H. J. Peng, J. Q. Huang, X. Q. Zhang, Q. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202204776;
- 16bL. P. Hou, Y. Li, Z. Li, Q. K. Zhang, B. Q. Li, C. X. Bi, Z. X. Chen, L. L. Su, J. Q. Huang, R. Wen, X. Q. Zhang, Q. Zhang, Angew. Chem. Int. Ed. 2023, 62, e202305466;
- 16cJ. Sun, X. Cao, H. Yang, P. He, M. A. Dato, J. Cabana, H. Zhou, Angew. Chem. Int. Ed. 2022, 61, e202207225.
- 17F. Y. Cheng, X. Y. Zhang, Y. G. Qiu, J. X. Zhang, Y. Liu, P. Wei, M. Y. Ou, S. X. Sun, Y. Xu, Q. Li, C. Fang, J. T. Han, Y. H. Huang, Nano Energy 2021, 88, 106301.
- 18
- 18aX. Liu, G.-L. Xu, V. S. C. Kolluru, C. Zhao, Q. Li, X. Zhou, Y. Liu, L. Yin, Z. Zhuo, A. Daali, J.-J. Fan, W. Liu, Y. Ren, W. Xu, J. Deng, I. Hwang, D. Ren, X. Feng, C. Sun, L. Huang, T. Zhou, M. Du, Z. Chen, S.-G. Sun, M. K. Y. Chan, W. Yang, M. Ouyang, K. Amine, Nat. Energy 2022, 7, 808–817;
- 18bF. Zhang, S. Lou, S. Li, Z. Yu, Q. Liu, A. Dai, C. Cao, M. F. Toney, M. Ge, X. Xiao, W. K. Lee, Y. Yao, J. Deng, T. Liu, Y. Tang, G. Yin, J. Lu, D. Su, J. Wang, Nat. Commun. 2020, 11, 3050.
- 19
- 19aX. Bi, M. Li, C. Liu, Y. Yuan, H. Wang, B. Key, R. Wang, R. Shahbazian-Yassar, L. A. Curtiss, J. Lu, K. Amine, Angew. Chem. Int. Ed. 2020, 59, 22978–22982;
- 19bD. Wang, X. Mu, P. He, H. Zhou, Mater. Today 2019, 26, 87–99.
- 20
- 20aB. Wang, Z. Zhuo, H. Li, S. Liu, S. Zhao, X. Zhang, J. Liu, D. Xiao, W. Yang, H. Yu, Adv. Mater. 2023, 35, e2207904;
- 20bJ. Sun, C. Sheng, X. Cao, P. Wang, P. He, H. Yang, Z. Chang, X. Yue, H. Zhou, Adv. Funct. Mater. 2022, 32, 2110295.
- 21
- 21aX. P. Zhang, X. W. Mu, S. X. Yang, P. F. Wang, S. H. Guo, M. Han, P. He, H. S. Zhou, Energy Environ. Sci. 2018, 1, 61–74;
- 21bD. Zhai, K. C. Lau, H. H. Wang, J. Wen, D. J. Miller, J. Lu, F. Kang, B. Li, W. Yang, J. Gao, E. Indacochea, L. A. Curtiss, K. Amine, Nano Lett. 2015, 15, 1041–1046.
- 22A. T. S. Freiberg, M. K. Roos, J. Wandt, R. de Vivie-Riedle, H. A. Gasteiger, J. Phys. Chem. A 2018, 122, 8828–8839.
- 23
- 23aB. L. D. Rinkel, D. S. Hall, I. Temprano, C. P. Grey, J. Am. Chem. Soc. 2020, 142, 15058–15074;
- 23bK. Xu, Chem. Rev. 2014, 114, 11503–11618.
- 24L. Xia, H. Miao, C. Zhang, G. Z. Chen, J. Yuan, Energy Storage Mater. 2021, 38, 542–570.
- 25X. Fan, C. Wang, Chem. Soc. Rev. 2021, 50, 10486–10566.
- 26B. Zhang, Y. Zhang, X. Wang, H. Liu, Y. Yan, S. Zhou, Y. Tang, G. Zeng, X. Wu, H.-G. Liao, Y. Qiu, H. Huang, L. Zheng, J. Xu, W. Yin, Z. Huang, Y. Xiao, Q. Xie, D.-L. Peng, C. Li, Y. Qiao, S.-G. Sun, J. Am. Chem. Soc. 2023, 145, 8700–8713.
- 27T. Liu, J. Liu, L. Li, L. Yu, J. Diao, T. Zhou, S. Li, A. Dai, W. Zhao, S. Xu, Y. Ren, L. Wang, T. Wu, R. Qi, Y. Xiao, J. Zheng, W. Cha, R. Harder, I. Robinson, J. Wen, J. Lu, F. Pan, K. Amine, Nature 2022, 606, 305–312.
- 28
- 28aY. Jin, N. H. Kneusels, P. Magusin, G. Kim, E. Castillo-Martinez, L. E. Marbella, R. N. Kerber, D. J. Howe, S. Paul, T. Liu, C. P. Grey, J. Am. Chem. Soc. 2017, 139, 14992–15004;
- 28bY. Yu, P. Karayaylali, Y. Katayama, L. Giordano, M. Gauthier, F. Maglia, R. Jung, I. Lund, Y. Shao-Horn, J. Phys. Chem. C 2018, 122, 27368–27382;
- 28cY. Jin, N. H. Kneusels, C. P. Grey, J. Phys. Chem. Lett. 2019, 10, 6345–6350.
- 29K. Ku, J. Hong, H. Kim, H. Park, W. M. Seong, S. K. Jung, G. Yoon, K. Y. Park, H. Kim, K. Kang, Adv. Energy Mater. 2018, 8, 1800606.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.