Enabling Carbonized Polymer Dots with Color-tunable Time-dependent Room Temperature Phosphorescence through Confining Carboxyl Dimer Association
Chunyuan Kang
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 (P. R. China)
Search for more papers by this authorSongyuan Tao
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 (P. R. China)
Search for more papers by this authorFan Yang
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 (P. R. China)
Search for more papers by this authorChengyu Zheng
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 (P. R. China)
Search for more papers by this authorCorresponding Author
Prof. Zexing Qu
Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Bai Yang
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 (P. R. China)
Search for more papers by this authorChunyuan Kang
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 (P. R. China)
Search for more papers by this authorSongyuan Tao
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 (P. R. China)
Search for more papers by this authorFan Yang
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 (P. R. China)
Search for more papers by this authorChengyu Zheng
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 (P. R. China)
Search for more papers by this authorCorresponding Author
Prof. Zexing Qu
Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Bai Yang
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 (P. R. China)
Search for more papers by this authorAbstract
Developing a facile strategy to realize fine-tuning of phosphorescence color in time-dependent room temperature phosphorescence (RTP) materials is essential but both theoretically and practically rarely exploited. Through simultaneously confining carboxyl dimer association and isolated carboxyl into the particle via a simple hydrothermal treatment of polyacrylic acid, a dual-peak emission of red phosphorescence (645 nm) and green phosphorescence (550 nm) was observed from carbonized polymer dots (CPDs). The ratio of the two luminescent species can be well regulated by hydrochloric acid inhibiting the dissociation of carboxyl to promote hydrogen bond. Due to comparable but different lifetimes, color-tunable time-dependent RTP with color changing from yellow to green or orange to green were obtained. Based on the crosslinking enhanced emission effect, the phosphorescence visible time was even extended to 7 s through introducing polyethylenimide. This study not only proposes a novel and facile method for developing CPDs with color-tunable time-dependent RTP, but also provides a bran-new non-conjugated red phosphorescence unit and its definite structure.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202316527-sup-0001-misc_information.pdf4 MB | Supporting Information |
ange202316527-sup-0001-Video_for_Figure_5.mp42.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aL. Ding, X. D. Wang, J. Am. Chem. Soc. 2020, 142, 13558;
- 1bH. Shi, W. Yao, W. Ye, H. Ma, W. Huang, Z. An, Acc. Chem. Res. 2022, 55, 3445;
- 1cW. Zhao, Z. He, B. Z. Tang, Nat. Rev. Mater. 2020, 5, 869;
- 1dR. Kabe, C. Adachi, Nature 2017, 550, 384.
- 2D. Li, Y. Yang, J. Yang, M. Fang, B. Z. Tang, Z. Li, Nat. Commun. 2022, 13, 347.
- 3
- 3aX. Yu, H. Zhang, J. Yu, Aggregate 2021, 2, 20;
- 3bK. Jiang, L. Zhang, J. Lu, C. Xu, C. Cai, H. Lin, Angew. Chem. Int. Ed. 2016, 55, 7231.
- 4X. Yu, K. Liu, H. Zhang, B. Wang, G. Yang, J. Li, J. Yu, CCS Chem. 2021, 3, 252.
- 5
- 5aX. Wang, H. Ma, M. Gu, C. Lin, N. Gan, Z. Xie, H. Wang, L. Bian, L. Fu, S. Cai, Z. Chi, W. Yao, Z. An, H. Shi, W. Huang, Chem. Mater. 2019, 31, 5584;
- 5bT. Zhang, Y. Wu, X. Ma, Chem. Eng. J. 2021, 412, 128689;
- 5cJ. Chen, X. Chen, Y. Liu, Y. Li, J. Zhao, Z. Yang, Y. Zhang, Z. Chi, Chem. Sci. 2021, 12, 9201.
- 6Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, D. Jin, Nat. Photonics 2013, 8, 32.
- 7
- 7aX. Dou, T. Zhu, Z. Wang, W. Sun, Y. Lai, K. Sui, Y. Tan, Y. Zhang, W. Z. Yuan, Adv. Mater. 2020, 32, e2004768;
- 7bZ. Wang, A. Li, Z. Zhao, T. Zhu, Q. Zhang, Y. Zhang, Y. Tan, W. Z. Yuan, Adv. Mater. 2022, 34, e2202182.
- 8J. X. Wang, Y. G. Fang, C. X. Li, L. Y. Niu, W. H. Fang, G. Cui, Q. Z. Yang, Angew. Chem. Int. Ed. 2020, 59, 10032.
- 9
- 9aJ. Tan, Q. Li, S. Meng, Y. Li, J. Yang, Y. Ye, Z. Tang, S. Qu, X. Ren, Adv. Mater. 2021, 33, e2006781;
- 9bW. Shi, R. Wang, J. Liu, F. Peng, R. Tian, C. Lu, Angew. Chem. Int. Ed. 2023, 62, e202303063.
- 10
- 10aC. Peng, X. Chen, M. Chen, S. Lu, Y. Wang, S. Wu, X. Liu, W. Huang, Research 2021, 2021, 27;
- 10bK. Jiang, Y. Wang, X. Gao, C. Cai, H. Lin, Angew. Chem. Int. Ed. 2018, 57, 6216;
- 10cY. Sun, S. Liu, L. Sun, S. Wu, G. Hu, X. Pang, A. T. Smith, C. Hu, S. Zeng, W. Wang, Y. Liu, M. Zheng, Nat. Commun. 2020, 11, 5591.
- 11
- 11aK. Jiang, Y. Wang, C. Cai, H. Lin, Adv. Mater. 2018, 30, e1800783;
- 11bC. Xia, S. Zhu, T. Feng, M. Yang, B. Yang, Adv. Sci. 2019, 6, 1901316.
- 12T. Feng, S. Zhu, Q. Zeng, S. Lu, S. Tao, J. Liu, B. Yang, ACS Appl. Mater. Interfaces 2018, 10, 12262.
- 13H. Shi, Z. Niu, H. Wang, W. Ye, K. Xi, X. Huang, H. Wang, Y. Liu, H. Lin, H. Shi, Z. An, Chem. Sci. 2022, 13, 4406.
- 14M. Park, H. S. Kim, H. Yoon, J. Kim, S. Lee, S. Yoo, S. Jeon, Adv. Mater. 2020, 32, e2000936.
- 15Q. Zhou, Z. Wang, X. Dou, Y. Wang, S. Liu, Y. Zhang, W. Z. Yuan, Mater. Chem. Front. 2019, 3, 257.
- 16
- 16aJ. Bernstein, R. E. Davis, L. Shimoni, N.-L. Chang, Angew. Chem. Int. Ed. 1995, 34, 1555;
- 16bP. Farfan, A. Echeverri, E. Diaz, J. D. Tapia, S. Gomez, A. Restrepo, J. Chem. Phys. 2017, 147, 044312;
- 16cR. W. Gora, S. J. Grabowski, J. Leszczynski, J. Phys. Chem. A 2005, 109, 6397.
- 17
- 17aS. Tao, S. Zhu, T. Feng, C. Zheng, B. Yang, Angew. Chem. Int. Ed. 2020, 59, 9826;
- 17bS. Zhu, L. Wang, N. Zhou, X. Zhao, Y. Song, S. Maharjan, J. Zhang, L. Lu, H. Wang, B. Yang, Chem. Commun. 2014, 50, 13845.
- 18S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H. Wang, B. Yang, Angew. Chem. Int. Ed. 2013, 52, 3953.
- 19S. Tao, S. Zhu, T. Feng, C. Xia, Y. Song, B. Yang, Mater. Today Chem. 2017, 6, 13.
- 20Y. J. Wang, X. N. Zhang, Y. Song, Y. Zhao, L. Chen, F. Su, L. Li, Z. L. Wu, Q. Zheng, Chem. Mater. 2019, 31, 1430.
- 21D. Zhao, Y. Zhu, W. Cheng, G. Xu, Q. Wang, S. Liu, J. Li, C. Chen, H. Yu, L. Hu, Matter 2020, 2, 390.
- 22S. Zhu, J. Zhang, L. Wang, Y. Song, G. Zhang, H. Wang, B. Yang, Chem. Commun. 2012, 48, 10889.
- 23
- 23aC. Wang, Y. He, Y. Xu, L. Sui, T. Jiang, G. Ran, Q. Song, J. Mater. Chem. A 2022, 10, 2085;
- 23bZ.-F. Liu, X. Chen, W. J. Jin, J. Mater. Chem. C 2020, 8, 7330.
- 24L. W. Reeve, Trans. Faraday Soc. 1959, 55, 1684.
- 25
- 25aL. Ai, Y. Yang, B. Wang, J. Chang, Z. Tang, B. Yang, S. Lu, Sci. Bull. 2021, 66, 839;
- 25bB. Wang, S. Lu, Matter 2022, 5, 110.
- 26
- 26aJ. R. Macairan, T. V. de Medeiros, M. Gazzetto, F. Yarur Villanueva, A. Cannizzo, R. Naccache, J. Colloid Interface Sci. 2022, 606, 67;
- 26bB. Zhang, B. Wang, E. V. Ushakova, B. He, G. Xing, Z. Tang, A. L. Rogach, S. Qu, Small 2022, 19, e2204158.
- 27Q. Cao, K. K. Liu, Y. C. Liang, S. Y. Song, Y. Deng, X. Mao, Y. Wang, W. B. Zhao, Q. Lou, C. X. Shan, Nano Lett. 2022, 22, 4097.
- 28H. Ding, J. S. Wei, P. Zhang, Z. Y. Zhou, Q. Y. Gao, H. M. Xiong, Small 2018, 14, e1800612.
- 29S. Tao, T. Feng, C. Zheng, S. Zhu, B. Yang, J. Phys. Chem. Lett. 2019, 10, 5182.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.