Engineering Electronic Structure of Nitrogen-Carbon Sites by sp3-Hybridized Carbon and Incorporating Chlorine to Boost Oxygen Reduction Activity
Xueting Feng
Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072 China
These authors contributed equally to this work.
Contribution: Writing - original draft (lead)
Search for more papers by this authorGuanzhen Chen
Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072 China
These authors contributed equally to this work.
Contribution: Writing - original draft (equal)
Search for more papers by this authorZhibo Cui
Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072 China
Contribution: Writing - original draft (supporting)
Search for more papers by this authorRong Qin
Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072 China
Contribution: Writing - original draft (supporting)
Search for more papers by this authorWensheng Jiao
Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072 China
Contribution: Writing - original draft (supporting)
Search for more papers by this authorZeyi Huang
Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072 China
Contribution: Writing - original draft (supporting)
Search for more papers by this authorZiang Shang
Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072 China
Contribution: Writing - original draft (supporting)
Search for more papers by this authorDr. Chao Ma
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Contribution: Writing - original draft (supporting)
Search for more papers by this authorDr. Xusheng Zheng
National Synchrotron Radiation Laboratory University of Science and Technology of China, Hefei, Anhui, 230029 China
Contribution: Writing - original draft (supporting)
Search for more papers by this authorCorresponding Author
Prof. Yunhu Han
Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072 China
Search for more papers by this authorCorresponding Author
Prof. Wei Huang
Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072 China
Contribution: Writing - review & editing (supporting)
Search for more papers by this authorXueting Feng
Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072 China
These authors contributed equally to this work.
Contribution: Writing - original draft (lead)
Search for more papers by this authorGuanzhen Chen
Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072 China
These authors contributed equally to this work.
Contribution: Writing - original draft (equal)
Search for more papers by this authorZhibo Cui
Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072 China
Contribution: Writing - original draft (supporting)
Search for more papers by this authorRong Qin
Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072 China
Contribution: Writing - original draft (supporting)
Search for more papers by this authorWensheng Jiao
Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072 China
Contribution: Writing - original draft (supporting)
Search for more papers by this authorZeyi Huang
Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072 China
Contribution: Writing - original draft (supporting)
Search for more papers by this authorZiang Shang
Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072 China
Contribution: Writing - original draft (supporting)
Search for more papers by this authorDr. Chao Ma
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Contribution: Writing - original draft (supporting)
Search for more papers by this authorDr. Xusheng Zheng
National Synchrotron Radiation Laboratory University of Science and Technology of China, Hefei, Anhui, 230029 China
Contribution: Writing - original draft (supporting)
Search for more papers by this authorCorresponding Author
Prof. Yunhu Han
Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072 China
Search for more papers by this authorCorresponding Author
Prof. Wei Huang
Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072 China
Contribution: Writing - review & editing (supporting)
Search for more papers by this authorAbstract
Development of efficient and easy-to-prepare low-cost oxygen reaction electrocatalysts is essential for widespread application of rechargeable Zn-air batteries (ZABs). Herein, we mixed NaCl and ZIF-8 by simple physical milling and pyrolysis to obtain a metal-free porous electrocatalyst doped with Cl (mf-pClNC). The mf-pClNC electrocatalyst exhibits a good oxygen reduction reaction (ORR) activity (E1/2=0.91 V vs. RHE) and high stability in alkaline electrolyte, exceeding most of the reported transition metal carbon-based electrocatalysts and being comparable to commercial Pt/C electrocatalysts. Likewise, the mf-pClNC electrocatalyst also shows state-of-the-art ORR activity and stability in acidic electrolyte. From experimental and theoretical calculations, the better ORR activity is most likely originated from the fact that the introduced Cl promotes the increase of sp3-hybridized carbon, while the sp3-hybridized carbon and Cl together modify the electronic structure of the N-adjacent carbons, as the active sites, while NaCl molten-salt etching provides abundant paths for the transport of electrons/protons. Furthermore, the liquid rechargeable ZAB using the mf-pClNC electrocatalyst as the cathode shows a fulfilling performance with a peak power density of 276.88 mW cm−2. Flexible quasi-solid-state rechargeable ZAB constructed with the mf-pClNC electrocatalyst as the cathode exhibits an exciting performance both at low, high and room temperatures.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202316314-sup-0001-misc_information.pdf4.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aY. Wang, J. Wu, S. Tang, J. Yang, C. Ye, J. Chen, Y. Lei, D. Wang, Angew. Chem. Int. Ed. 2023, 62, e202219191;
- 1bX. Yang, X. Zheng, H. Li, B. Luo, Y. He, Y. Yao, H. Zhou, Z. Yan, Y. Kuang, Z. Huang, Adv. Funct. Mater. 2022, 32, 2200397;
- 1cD. Du, S. Zhao, Z. Zhu, F. Li, J. Chen, Angew. Chem. Int. Ed. 2020, 59, 18140–18144;
- 1dK. Wang, Z. Lu, J. Lei, Z. Liu, Y. Li, Y. Cao, ACS Nano 2022, 16, 11944–11956;
- 1eW. Xue, Q. Zhou, X. Cui, J. Zhang, S. Zuo, F. Mo, J. Jiang, X. Zhu, Z. Lin, Angew. Chem. Int. Ed. 2023, 62, e202307504;
- 1fQ. Wang, Y. Tan, S. Tang, W. Liu, Y. Zhang, X. Xiong, Y. Lei, ACS Nano 2023, 17, 9565–9574;
- 1gN. Yu, H. Chen, J. Kuang, K. Bao, W. Yan, J. Ye, Z. Yang, Q. Huang, Y. Wu, S. Sun, Nano Res. 2022, 15, 7209–7219;
- 1hG. Chen, W. Chen, R. Lu, C. Ma, Z. Zhang, Z. Huang, J. Weng, Z. Wang, Y. Han, W. Huang, J. Am. Chem. Soc. 2023, 145, 22069–22078;
- 1iH. Sun, M. Zhao, C. Ma, W. Chen, Y. Yang, Y. Han, Nano Res. 2023, 16, 4980–4986.
- 2
- 2aK. Wu, L. Zhang, Y. Yuan, L. Zhong, Z. Chen, X. Chi, H. Lu, Z. Chen, R. Zou, T. Li, C. Jiang, Y. Chen, X. Peng, J. Lu, Adv. Mater. 2020, 32, 2002292;
- 2bZ. Pei, Z. Yuan, C. Wang, S. Zhao, J. Fei, L. Wei, J. Chen, C. Wang, R. Qi, Z. Liu, Y. Chen, Angew. Chem. Int. Ed. 2020, 59, 4793–4799;
- 2cX. Tang, Y. Wei, W. Zhai, Y. Wu, T. Hu, K. Yuan, Y. Chen, Adv. Mater. 2023, 35, 2208942;
- 2dX. Zheng, Y. Cao, H. Wang, J. Zhang, M. Zhao, Z. Huang, Y. Wang, L. Zhang, Y. Deng, W. Hu, X. Han, Angew. Chem. Int. Ed. 2023, 62, e202302689;
- 2eX. Zhong, Y. Shao, B. Chen, C. Li, J. Sheng, X. Xiao, B. Xu, J. Li, H. M. Cheng, G. Zhou, Adv. Mater. 2023, 35, 2301952;
- 2fM. Jiao, L. Dai, H. R. Ren, M. Zhang, X. Xiao, B. Wang, J. Yang, B. Liu, G. Zhou, H. M. Cheng, Angew. Chem. Int. Ed. 2023, 62, e202301114;
- 2gJ. N. Liu, C. X. Zhao, D. Ren, J. Wang, R. Zhang, S. H. Wang, C. Zhao, B. Q. Li, Q. Zhang, Adv. Mater. 2022, 34, 2109407;
- 2hX. Zhong, Z. Zheng, J. Xu, X. Xiao, C. Sun, M. Zhang, J. Ma, B. Xu, K. Yu, X. Zhang, H. M. Cheng, G. Zhou, Adv. Mater. 2023, 35, 2209980;
- 2iZ. Cui, W. Jiao, Z. Huang, G. Chen, B. Zhang, Y. Han, W. Huang, Small 2023, 19. 2301465.
- 3
- 3aZ. Li, S. Ji, C. Wang, H. Liu, L. Leng, L. Du, J. Gao, M. Qiao, J. H. Horton, Y. Wang, Adv. Mater. 2023, 35, 2300905;
- 3bA. Han, X. Wang, K. Tang, Z. Zhang, C. Ye, K. Kong, H. Hu, L. Zheng, P. Jiang, C. Zhao, Q. Zhang, D. Wang, Y. Li, Angew. Chem. Int. Ed. 2021, 60, 19262–19271;
- 3cL. Li, X. Tang, S. Huang, C. Lu, D. Lutzenkirchen-Hecht, K. Yuan, X. Zhuang, Y. Chen, Angew. Chem. Int. Ed. 2023, 62, e202301642;
- 3dY. Zhou, R. Lu, X. Tao, Z. Qiu, G. Chen, J. Yang, Y. Zhao, X. Feng, K. Mullen, J. Am. Chem. Soc. 2023, 145, 3647–3655;
- 3eC. Hu, Y. Zhang, A. Hu, Y. Wang, X. Wei, K. Shen, L. Chen, Y. Li, Adv. Mater. 2023, 35, 2209298;
- 3fH. Huang, A. Huang, D. Liu, W. Han, C. H. Kuo, H. Y. Chen, L. Li, H. Pan, S. Peng, Adv. Mater. 2023, 35, 2303109.
- 4
- 4aG. Fu, J. Wang, Y. Chen, Y. Liu, Y. Tang, J. B. Goodenough, J.-M. Lee, Adv. Energy Mater. 2018, 8 1802263;
- 4bT. Zhou, W. Xu, N. Zhang, Z. Du, C. Zhong, W. Yan, H. Ju, W. Chu, H. Jiang, C. Wu, Y. Xie, Adv. Mater. 2019, 31, 1807468;
- 4cT. Zhou, N. Zhang, C. Wu, Y. Xie, Energy Environ. Sci. 2020, 13, 1132–1153;
- 4dL. Yang, X. Zhang, L. Yu, J. Hou, Z. Zhou, R. Lv, Adv. Mater. 2022, 34, 2105410;
- 4eH. Zhang, M. Zhao, H. Liu, S. Shi, Z. Wang, B. Zhang, L. Song, J. Shang, Y. Yang, C. Ma, L. Zheng, Y. Han, W. Huang, Nano Lett. 2021, 21, 2255–2264;
- 4fK. Ding, J. Hu, J. Luo, L. Zhao, W. Jin, Y. Liu, Z. Wu, G. Zou, H. Hou, X. Ji, Adv. Funct. Mater. 2022, 32 2207331.
- 5
- 5aX. Yan, D. Liu, P. Guo, Y. He, X. Wang, Z. Li, H. Pan, D. Sun, F. Fang, R. Wu, Adv. Mater. 2023, 35, 2210975;
- 5bZ. Jin, P. Li, Y. Meng, Z. Fang, D. Xiao, G. Yu, Nat. Catal. 2021, 4, 615–622;
- 5cL. Yu, Y. Li, Y. Ruan, Angew. Chem. Int. Ed. 2021, 60, 25296–25301;
- 5dM. Zhao, H. Liu, H. Zhang, W. Chen, H. Sun, Z. Wang, B. Zhang, L. Song, Y. Yang, C. Ma, Y. Han, W. Huang, Energy Environ. Sci. 2021, 14, 6455–6463;
- 5eC. X. Zhao, L. Yu, J. N. Liu, J. Wang, N. Yao, X. Y. Li, X. Chen, B. Q. Li, Q. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202208042.
- 6
- 6aS. Chen, T. Wang, L. Ma, B. Zhou, J. Wu, D. Zhu, Y. Y. Li, J. Fan, C. Zhi, Chem 2023, 9, 497–510;
- 6bC. Ye, M. Zheng, Z. Li, Q. Fan, H. Ma, X. Fu, D. Wang, J. Wang, Y. Li, Angew. Chem. Int. Ed. 2022, 61, e202213366;
- 6cZ. Zhu, H. Yin, Y. Wang, C. H. Chuang, L. Xing, M. Dong, Y. R. Lu, G. Casillas-Garcia, Y. Zheng, S. Chen, Y. Dou, P. Liu, Q. Cheng, H. Zhao, Adv. Mater. 2020, 32, 2004670.
- 7
- 7aP. Cui, L. Zhao, Y. Long, L. Dai, C. Hu, Angew. Chem. Int. Ed. 2023, 62, e202218269;
- 7bC. Hu, R. Paul, Q. Dai, L. Dai, Chem. Soc. Rev. 2021, 50, 11785–11843;
- 7cL. Zhang, T. Gu, K. Lu, L. Zhou, D. S. Li, R. Wang, Adv. Funct. Mater. 2021, 31, 2103187;
- 7dX. Yan, B. Wang, J. Ren, X. Long, D. Yang, Angew. Chem. Int. Ed. 2022, 61, e202209583.
- 8
- 8aW. Ding, L. Li, K. Xiong, Y. Wang, W. Li, Y. Nie, S. Chen, X. Qi, Z. Wei, J. Am. Chem. Soc. 2015, 137, 5414–5420;
- 8bX. Lu, D. Wang, L. Ge, L. Xiao, H. Zhang, L. Liu, J. Zhang, M. An, P. Yang, New J. Chem. 2018, 42, 19665–19670.
- 9
- 9aL. Yang, J. Shui, L. Du, Y. Shao, J. Liu, L. Dai, Z. Hu, Adv. Mater. 2019, 31, 1804799;
- 9bC. N. R. Rao, M. Chhetri, Adv. Mater. 2019, 31, 1803668;
- 9cQ. Wu, Y. Jia, Q. Liu, X. Mao, Q. Guo, X. Yan, J. Zhao, F. Liu, A. Du, X. Yao, Chem 2022, 8, 2715–2733;
- 9dJ. Ortiz-Medina, Z. Wang, R. Cruz-Silva, A. Morelos-Gomez, F. Wang, X. Yao, M. Terrones, M. Endo, Adv. Mater. 2019, 31, 1805717.
- 10
- 10aG. Ye, S. Liu, K. Huang, S. Wang, K. Zhao, W. Zhu, Y. Su, J. Wang, Z. He, Adv. Funct. Mater. 2022, 32, 2111396;
- 10bC. Zhang, W. Shen, K. Guo, M. Xiong, J. Zhang, X. Lu, J. Am. Chem. Soc. 2023, 145, 11589–11598;
- 10cN. Wang, B. Lu, L. Li, W. Niu, Z. Tang, X. Kang, S. Chen, ACS Catal. 2018, 8, 6827–6836;
- 10dB. S. Rawah, M. Albloushi, W. Li, ACS Sustainable Chem. Eng. 2022, 10, 5453–5462;
- 10eR. Li, F. Liu, Y. Zhang, M. Guo, D. Liu, ACS Appl. Mater. Interfaces 2020, 12, 44578–44587;
- 10fZ. Bao, J. Zhao, S. Zhang, L. Ding, X. Peng, G. Wang, Z. Zhao, X. Zhong, Z. Yao, J. Wang, J. Mater. Chem. A 2022, 10, 4749–4757.
- 11
- 11aG. Ye, S. Liu, K. Zhao, Z. He, Angew. Chem. Int. Ed. 2023, 62, e202303409;
- 11bJ. Gao, Y. Wang, H. Wu, X. Liu, L. Wang, Q. Yu, A. Li, H. Wang, C. Song, Z. Gao, M. Peng, M. Zhang, N. Ma, J. Wang, W. Zhou, G. Wang, Z. Yin, D. Ma, Angew. Chem. Int. Ed. 2019, 58, 15089–15097;
- 11cJ. Zhu, Y. Huang, W. Mei, C. Zhao, C. Zhang, J. Zhang, I. S. Amiinu, S. Mu, Angew. Chem. Int. Ed. 2019, 58, 3859–3864;
- 11dW. Wang, L. Shang, G. Chang, C. Yan, R. Shi, Y. Zhao, G. I. N. Waterhouse, D. Yang, T. Zhang, Adv. Mater. 2019, 31, 1808276.
- 12
- 12aM. F. Sanad, H. M. Franklin, B. A. Ali, A. R. Puente Santiago, A. N. Nair, V. S. N. Chava, O. Fernandez-Delgado, N. K. Allam, S. Stevenson, S. T. Sreenivasan, L. Echegoyen, Angew. Chem. Int. Ed. 2022, 61, e202116727;
- 12bK. Gao, B. Wang, L. Tao, B. V. Cunning, Z. Zhang, S. Wang, R. S. Ruoff, L. Qu, Adv. Mater. 2019, 31, 1805121;
- 12cS. Zhao, D. W. Wang, R. Amal, L. Dai, Adv. Mater. 2019, 31, 1801526.
- 13F. Kong, X. Cui, Y. Huang, H. Yao, Y. Chen, H. Tian, G. Meng, C. Chen, Z. Chang, J. Shi, Angew. Chem. Int. Ed. 2022, 61, e202116290.
- 14S. Liu, Y. Zhang, B. Ge, F. Zheng, N. Zhang, M. Zuo, Y. Yang, Q. Chen, Adv. Mater. 2021, 33, 2103133.
- 15J. Li, W. Xia, J. Tang, Y. Gao, C. Jiang, Y. Jia, T. Chen, Z. Hou, R. Qi, D. Jiang, T. Asahi, X. Xu, T. Wang, J. He, Y. Yamauchi, J. Am. Chem. Soc. 2022, 144, 9280–9291.
- 16
- 16aT. Sun, W. Zang, H. Yan, J. Li, Z. Zhang, Y. Bu, W. Chen, J. Wang, J. Lu, C. Su, ACS Catal. 2021, 11, 4498–4509;
- 16bP. Huang, Z. Cheng, L. Zeng, J. Yu, L. Tan, P. Mohapatra, L.-S. Fan, Y. Zhu, ACS Catal. 2020, 10, 14928–14935;
- 16cZ. Liu, B. Li, Y. Feng, D. Jia, C. Li, Y. Zhou, Small Methods 2022, 6, 2270059.
- 17
- 17aB. E. Bursten, M. R. Callstrom, C. A. Jolly, L. A. Paquette, M. R. Sivik, R. S. Tucker, C. A. Wartchow, Organometallics 1994, 13, 127–133;
- 17bS. Men, P. Licence, H. Luo, S. Dai, J. Phys. Chem. B 2020, 124, 6657–6663.
- 18D. Li, Y. Jia, G. Chang, J. Chen, H. Liu, J. Wang, Y. Hu, Y. Xia, D. Yang, X. Yao, Chem 2018, 4, 2345–2356.
- 19
- 19aW. Peng, J. Liu, X. Liu, L. Wang, L. Yin, H. Tan, F. Hou, J. Liang, Nat. Commun. 2023, 14, 4430;
- 19bJ. Liu, P. Song, W. Xu, Carbon 2017, 115, 763–772;
- 19cD. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Science 2016, 351, 361–365.
- 20
- 20aX. Wang, Y. Jia, X. Mao, L. Zhang, D. Liu, L. Song, X. Yan, J. Chen, D. Yang, J. Zhou, K. Wang, A. Du, X. Yao, Chem 2020, 6, 2009–2023;
- 20bY. H. Zhang, D. Zhang, L. R. Wu, J. Ma, Q. Yi, Z. Wang, X. Wang, Z. Wu, C. Zhang, N. Hu, S. C. Haw, J. M. Chen, Z. Hu, G. Cui, Adv. Energy Mater. 2022, 12, 2202341.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.