Effect of Feature Shape and Dimension of a Confinement Geometry on Selectivity of Electrocatalytic CO2 Reduction
Yesol Kim
KAIST-UCB-VNU Global Climate Change Research Center, Department of Chemical & Biomolecular Engineering (BK-21 plus), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro Yuseong-gu, Daejeon, 34141 Republic of Korea
Materials and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
Search for more papers by this authorDr. Geun-Tae Yun
KAIST-UCB-VNU Global Climate Change Research Center, Department of Chemical & Biomolecular Engineering (BK-21 plus), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro Yuseong-gu, Daejeon, 34141 Republic of Korea
Search for more papers by this authorMinki Kim
KAIST-UCB-VNU Global Climate Change Research Center, Department of Chemical & Biomolecular Engineering (BK-21 plus), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro Yuseong-gu, Daejeon, 34141 Republic of Korea
Search for more papers by this authorAqil Jamal
Research and Development Center, Saudi Aramco, Dhahran, 31311 Saudi Arabia
Search for more papers by this authorDr. Issam Gereige
Research and Development Center, Saudi Aramco, Dhahran, 31311 Saudi Arabia
Search for more papers by this authorProf. Dr. Joel W. Ager
Materials and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
Department of Materials Science and Engineering, University of California, Berkeley, CA 94720 USA
Search for more papers by this authorCorresponding Author
Dr. Woo-Bin Jung
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA
Search for more papers by this authorCorresponding Author
Prof. Hee-Tae Jung
KAIST-UCB-VNU Global Climate Change Research Center, Department of Chemical & Biomolecular Engineering (BK-21 plus), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro Yuseong-gu, Daejeon, 34141 Republic of Korea
KAIST Institute for Nanocentury, 291 Daehak-ro Yuseong-gu, Daejeon, 34141 Republic of Korea
Search for more papers by this authorYesol Kim
KAIST-UCB-VNU Global Climate Change Research Center, Department of Chemical & Biomolecular Engineering (BK-21 plus), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro Yuseong-gu, Daejeon, 34141 Republic of Korea
Materials and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
Search for more papers by this authorDr. Geun-Tae Yun
KAIST-UCB-VNU Global Climate Change Research Center, Department of Chemical & Biomolecular Engineering (BK-21 plus), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro Yuseong-gu, Daejeon, 34141 Republic of Korea
Search for more papers by this authorMinki Kim
KAIST-UCB-VNU Global Climate Change Research Center, Department of Chemical & Biomolecular Engineering (BK-21 plus), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro Yuseong-gu, Daejeon, 34141 Republic of Korea
Search for more papers by this authorAqil Jamal
Research and Development Center, Saudi Aramco, Dhahran, 31311 Saudi Arabia
Search for more papers by this authorDr. Issam Gereige
Research and Development Center, Saudi Aramco, Dhahran, 31311 Saudi Arabia
Search for more papers by this authorProf. Dr. Joel W. Ager
Materials and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
Department of Materials Science and Engineering, University of California, Berkeley, CA 94720 USA
Search for more papers by this authorCorresponding Author
Dr. Woo-Bin Jung
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA
Search for more papers by this authorCorresponding Author
Prof. Hee-Tae Jung
KAIST-UCB-VNU Global Climate Change Research Center, Department of Chemical & Biomolecular Engineering (BK-21 plus), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro Yuseong-gu, Daejeon, 34141 Republic of Korea
KAIST Institute for Nanocentury, 291 Daehak-ro Yuseong-gu, Daejeon, 34141 Republic of Korea
Search for more papers by this authorAbstract
The local confinement effect, which can generate a high concentration of hydroxide ions and reaction intermediates near the catalyst surface, is an important strategy for converting CO2 into multi-carbon products in electrocatalytic CO2 reduction. Therefore, understanding how the shape and dimension of the confinement geometry affect the product selectivity is crucial. In this study, we report for the first time the effect of the shape (degree of confinement) and dimension of the confined space on the product selectivity without changing the intrinsic property of Cu. We demonstrate that geometry influences the outcomes of products, such as CH4, C2H4, and EtOH, in different ways: the selectivity of CH4 and EtOH is affected by shape, while the selectivity of C2H4 is influenced by dimension of geometry predominantly. These phenomena are demonstrated, both experimentally and through simulation, to be induced by the local confinement effect within the confined structure. Our geometry model could serve as basis for designing the confined structures tailored for the production of specific products.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202316264-sup-0001-misc_information.pdf2.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Garg, M. Li, A. Z. Weber, L. Ge, L. Li, V. Rudolph, G. Wang, T. E. Rufford, J. Mater. Chem. A 2020, 8, 1511–1544.
- 2L. Fan, C. Xia, F. Yang, J. Wang, H. Wang, Y. Lu, Sci. Adv. 2020, 6, eaay3111.
- 3A. Liu, M. Gao, X. Ren, F. Meng, Y. Yang, L. Gao, Q. Yang, T. Ma, J. Mater. Chem. A 2020, 8, 3541–3562.
- 4J. Zhang, C. Guo, S. Fang, X. Zhao, L. Li, H. Jiang, Z. Liu, Z. Fan, W. Xu, J. Xiao, M. Zhong, Nat. Commun. 2023, 14, 1298.
- 5B. Chang, H. Pang, F. Raziq, S. Wang, K. W. Huang, J. Ye, H. Zhang, Energy Environ. Sci. 2023, 16, 4714–4758.
- 6T. Zheng, C. Liu, C. Guo, M. Zhang, X. Li, Q. Jiang, W. Xue, H. Li, A. Li, C. W. Pao, J. Xiao, C. Xia, J. Zeng, Nat. Nanotechnol. 2021, 16, 1386–1393.
- 7S. Nitopi, E. Bertheussen, S. B. Scott, X. Liu, A. K. Engstfeld, S. Horch, B. Seger, I. E. L. Stephens, K. Chan, C. Hahn, J. K. Nørskov, T. F. Jaramillo, I. Chorkendorff, Chem. Rev. 2019, 119, 7610–7672.
- 8C. Chen, J. F. Khosrowabadi Kotyk, S. W. Sheehan, Chem 2018, 4, 2571–2586.
- 9D. Li, H. Zhang, H. Xiang, S. Rasul, J. M. Fontmorin, P. Izadi, A. Roldan, R. Taylor, Y. Feng, L. Banerji, A. Cowan, E. H. Yu, J. Xuan, Sustain. Energy Fuels 2021, 5, 5893–5914.
- 10A. Bagger, W. Ju, A. S. Varela, P. Strasser, J. Rossmeisl, ChemPhysChem 2017, 18, 3266–3273.
- 11K. P. Kuhl, E. R. Cave, D. N. Abram, T. F. Jaramillo, Energy Environ. Sci. 2012, 5, 7050–7059.
- 12Y. Hori, A. Murata, R. Takahashi, J. Chem. Soc. Faraday Trans. 1 1989, 85, 2309–2326.
- 13M. S. Xie, B. Y. Xia, Y. Li, Y. Yan, Y. Yang, Q. Sun, S. H. Chan, A. Fisher, X. Wang, Energy Environ. Sci. 2016, 9, 1687–1695.
- 14J. Y. Kim, G. Kim, H. Won, I. Gereige, W. B. Jung, H. T. Jung, Adv. Mater. 2022, 34, 2106028.
- 15Y. Wang, P. Han, X. Lv, L. Zhang, G. Zheng, Joule 2018, 2, 2551–2582.
- 16G. L. De Gregorio, T. Burdyny, A. Loiudice, P. Iyengar, W. A. Smith, R. Buonsanti, ACS Catal. 2020, 10, 4854–4862.
- 17A. Bagger, W. Ju, A. S. Varela, P. Strasser, J. Rossmeisl, ACS Catal. 2019, 9, 7894–7899.
- 18T. Zhao, J. Li, J. Liu, F. Liu, K. Xu, M. Yu, W. Xu, F. Cheng, ACS Catal. 2023, 13, 4444–4453.
- 19J. C. Bui, C. Kim, A. J. King, O. Romiluyi, A. Kusoglu, A. Z. Weber, A. T. Bell, Acc. Chem. Res. 2022, 55, 484–494.
- 20M. Ma, K. Djanashvili, W. A. Smith, Angew. Chem. 2016, 128, 6792–6796.
- 21Y. Pang, T. Burdyny, C. T. Dinh, M. G. Kibria, J. Z. Fan, M. Liu, E. H. Sargent, D. Sinton, Green Chem. 2017, 19, 4023–4030.
- 22A. S. Varela, M. Kroschel, T. Reier, P. Strasser, Catal. Today 2016, 260, 8–13.
- 23K. M. Cho, W. B. Jung, D. Kim, J. Y. Kim, Y. Kim, G. T. Yun, S. Ryu, A. Al-Saggaf, I. Gereige, H. T. Jung, J. Mater. Chem. A 2020, 8, 14592–14599.
- 24M. C. O. Monteiro, A. Mirabal, L. Jacobse, K. Doblhoff-Dier, S. C. Barton, M. T. M. Koper, JACS Au 2021, 1, 1915–1924.
- 25J. Zhang, T. H. M. Pham, Y. Ko, M. Li, S. Yang, C. D. Koolen, L. Zhong, W. Luo, A. Züttel, Cell. Rep. Phys. Sci. 2022, 3, 100949.
- 26K. J. P. Schouten, E. Pérez Gallent, M. T. M. Koper, J. Electroanal. Chem. 2014, 716, 53–57.
- 27T. T. Zhuang, Y. Pang, Z. Q. Liang, Z. Wang, Y. Li, C. S. Tan, J. Li, C. T. Dinh, P. De Luna, P. L. Hsieh, T. Burdyny, H. H. Li, M. Liu, Y. Wang, F. Li, A. Proppe, A. Johnston, D. H. Nam, Z. Y. Wu, Y. R. Zheng, A. H. Ip, H. Tan, L. J. Chen, S. H. Yu, S. O. Kelley, D. Sinton, E. H. Sargent, Nat. Catal. 2018, 1, 946–951.
- 28P. P. Yang, X. L. Zhang, F. Y. Gao, Y. R. Zheng, Z. Z. Niu, X. Yu, R. Liu, Z. Z. Wu, S. Qin, L. P. Chi, Y. Duan, T. Ma, X. S. Zheng, J. F. Zhu, H. J. Wang, M. R. Gao, S. H. Yu, J. Am. Chem. Soc. 2020, 142, 6400–6408.
- 29K. D. Yang, W. R. Ko, J. H. Lee, S. J. Kim, H. Lee, M. H. Lee, K. T. Nam, Angew. Chem. Int. Ed. 2017, 56, 796–800.
- 30C. Kim, K. M. Cho, K. Park, J. Y. Kim, G. T. Yun, F. M. Toma, I. Gereige, H. T. Jung, Adv. Funct. Mater. 2021, 31,2102142.
- 31S. Sen, D. Liu, G. T. R. Palmore, ACS Catal. 2014, 4, 3091–3095.
- 32D. Raciti, K. J. Livi, C. Wang, Nano Lett. 2015, 15, 6829–6835.
- 33W. Liu, P. Zhai, A. Li, B. Wei, K. Si, Y. Wei, X. Wang, G. Zhu, Q. Chen, X. Gu, R. Zhang, W. Zhou, Y. Gong, Nat. Commun. 2022, 13, 1877.
- 34R. Wang, Y. Long, T. Zhu, J. Guo, C. Cai, N. Zhao, J. Xu, J. Colloid Interface Sci. 2017, 498, 123–127.
- 35S. Lin, E. K. Lee, N. Nguyen, M. Khine, Lab Chip 2014, 14, 3475–3488.
- 36Y. Xue, W. K. Lee, J. Yuan, T. W. Odom, Y. Huang, Langmuir 2018, 34, 15749–15753.
- 37C. T. Chapman, J. T. Paci, W. K. Lee, C. J. Engel, T. W. Odom, G. C. Schatz, ACS Appl. Mater. Interfaces 2016, 8, 24339–24344.
- 38M. D. Huntington, C. J. Engel, T. W. Odom, Angew. Chem. Int. Ed. 2014, 53, 8117–8121.
- 39W. B. Jung, K. M. Cho, W. K. Lee, T. W. Odom, H. T. Jung, ACS Appl. Mater. Interfaces 2018, 10, 1347–1355.
- 40W. B. Jung, G. T. Yun, Y. Kim, M. Kim, H. T. Jung, ACS Appl. Mater. Interfaces 2019, 11, 7546–7552.
- 41Y. Tan, B. Hu, J. Song, Z. Chu, W. Wu, Nano-Micro Lett. 2020, 12, 101.
- 42S. Nikravesh, D. Ryu, Y. L. Shen, Sci. Rep. 2020, 10, 5728.
- 43K. S. Kwok, Y. Wang, M. C. Cao, H. Shen, Z. He, G. Poirier, B. E. McCandless, K. J. Livi, D. A. Muller, C. Wang, D. H. Gracias, Nano Lett. 2019, 19, 9154–9159.
- 44J. Zhao, S. Xue, J. Barber, Y. Zhou, J. Meng, X. Ke, J. Mater. Chem. A 2020, 8, 4700–4734.
- 45W. Ma, X. He, W. Wang, S. Xie, Q. Zhang, Y. Wang, Chem. Soc. Rev. 2021, 50, 12897–12914.
- 46M. Ma, B. J. Trześniewski, J. Xie, W. A. Smith, Angew. Chem. Int. Ed. 2016, 55, 9748–9752.
- 47L.-X. Liu, Y. Cai, H. Du, X. Lu, X. Li, F. Liu, J. Fu, J.-J. Zhu, ACS Appl. Mater. Interfaces 2023, 15, 16673–16679.
- 48L. R. L. Ting, O. Piqué, S. Y. Lim, M. Tanhaei, F. Calle-Vallejo, B. S. Yeo, ACS Catal. 2020, 10, 4059–4069.
- 49F. Calle-Vallejo, M. T. M. Koper, Angew. Chem. Int. Ed. 2013, 52, 7282–7285.
- 50A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J. K. Nørskov, Energy Environ. Sci. 2010, 3, 1311–1315.
- 51X. Liu, P. Schlexer, J. Xiao, Y. Ji, L. Wang, R. B. Sandberg, M. Tang, K. S. Brown, H. Peng, S. Ringe, C. Hahn, T. F. Jaramillo, J. K. Nørskov, K. Chan, Nat. Commun. 2019, 10, 32.
- 52R. Kas, R. Kortlever, H. Yilmaz, M. T. M. Koper, G. Mul, ChemElectroChem 2015, 2, 354–358.
- 53Y. Zheng, A. Vasileff, X. Zhou, Y. Jiao, M. Jaroniec, S. Z. Qiao, J. Am. Chem. Soc. 2019, 141, 7646–7659.
- 54Z. Gu, H. Shen, L. Shang, X. Lv, L. Qian, G. Zheng, Z. Gu, H. Shen, L. Shang, X. Lv, L. Qian, G. Zheng, Small Methods 2018, 2, 1800121.
- 55A. J. Garza, A. T. Bell, M. Head-Gordon, ACS Catal. 2018, 8, 1490–1499.
- 56R. Kortlever, J. Shen, K. J. P. Schouten, F. Calle-Vallejo, M. T. M. Koper, J. Phys. Chem. Lett. 2015, 6, 4073–4082.
- 57C. T. Dinh, T. Burdyny, G. Kibria, A. Seifitokaldani, C. M. Gabardo, F. Pelayo García De Arquer, A. Kiani, J. P. Edwards, P. De Luna, O. S. Bushuyev, C. Zou, R. Quintero-Bermudez, Y. Pang, D. Sinton, E. H. Sargent, Science 2018, 360, 783–787.
- 58N. Gupta, M. Gattrell, B. MacDougall, J. Appl. Electrochem. 2006, 36, 161–172.
- 59Y. Lum, J. W. Ager, Energy Environ. Sci. 2018, 11, 2935–2944.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.