A Pyrene-Fused Dimerized Acceptor for Ternary Organic Solar Cells with 19% Efficiency and High Thermal Stability
Xucong Liu
Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorZhou Zhang
Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Dr. Chao Wang
Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorCuifen Zhang
Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 P. R. China
Search for more papers by this authorShijie Liang
Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorHaisheng Fang
Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorBo Wang
Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorProf. Zheng Tang
Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Chengyi Xiao
Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Weiwei Li
Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorXucong Liu
Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorZhou Zhang
Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Dr. Chao Wang
Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorCuifen Zhang
Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 P. R. China
Search for more papers by this authorShijie Liang
Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorHaisheng Fang
Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorBo Wang
Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorProf. Zheng Tang
Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Chengyi Xiao
Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Weiwei Li
Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorAbstract
A pyrene-fused dimerized electron acceptor has been successfully synthesized and subsequently incorporated as the third component in ternary organic solar cells (OSCs). Diverging from the traditional dimerized acceptors with a linear configuration, this novel electron acceptor displays a distinctive “butterfly-like” structure, comprising two Y-acceptors as wings fused with a pyrene-based backbone. The extended π-conjugated backbone and the electron-donating nature of pyrene enable the new acceptor to show low solubility, elevated glass transition temperature (Tg), and low-lying frontier energy levels. Consequently, the new dimerized acceptor seamlessly integrates as the third component into ternary OSCs, enhancing electron transporting properties, reducing non-radiative voltage loss, and elevating open-circuit voltage. These merits have enabled the ternary OSCs to show an exceptional efficiency of 19.07%, a marked improvement compared to the 17.6% attained in binary OSCs. More importantly, the high Tg exhibited by the pyrene-fused electron acceptor helps to stabilize the morphology of the photoactive layer thermal-treated at 70 °C, retaining 88.7% efficiency over 600 hours. For comparison, binary OSCs experience a decline to 73.7% efficiency after the same duration. These results indicate that the “butterfly-like” design and the incorporation of a pyrene unit is a promising strategy in the development of dimerized electron acceptors for OSCs.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202316039-sup-0001-misc_information.pdf2.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aK. Liu, Y. Jiang, F. Liu, G. Ran, F. Huang, W. Wang, W. Zhang, C. Zhang, J. Hou, X. Zhu, Adv. Mater. 2023, 35, e2300363;
- 1bC. Han, J. Wang, S. Zhang, L. Chen, F. Bi, J. Wang, C. Yang, P. Wang, Y. Li, X. Bao, Adv. Mater. 2023, 35, e2208986;
- 1cJ. Wang, Y. Wang, P. Bi, Z. Chen, J. Qiao, J. Li, W. Wang, Z. Zheng, S. Zhang, X. Hao, J. Hou, Adv. Mater. 2023, 35, e2301583;
- 1dQ. Ye, Z. Chen, D. Yang, W. Song, J. Zhu, S. Yang, J. Ge, F. Chen, Z. Ge, Adv. Mater. 2023, https://doi.org/10.1002/adma.202305562.
10.1002/adma.202305562 Google Scholar
- 2
- 2aY. Liu, B. Liu, C.-Q. Ma, F. Huang, G. Feng, H. Chen, J. Hou, L. Yan, Q. Wei, Q. Luo, Q. Bao, W. Ma, W. Liu, W. Li, X. Wan, X. Hu, Y. Han, Y. Li, Y. Zhou, Y. Zou, Y. Chen, Y. Li, Y. Chen, Z. Tang, Z. Hu, Z.-G. Zhang, Z. Bo, Sci. China Chem. 2021, 65, 224–268;
- 2bJ. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, Y. Zou, Joule 2019, 3, 1140–1151.
- 3Y. Lin, J. Wang, Z. G. Zhang, H. Bai, Y. Li, D. Zhu, X. Zhan, Adv. Mater. 2015, 27, 1170–1174.
- 4
- 4aP. Cheng, G. Li, X. W. Zhan, Y. Yang, Nat. Photonics 2018, 12, 131–142;
- 4bC. Q. Yan, S. Barlow, Z. H. Wang, H. Yan, A. K. Y. Jen, S. R. Marder, X. W. Zhan, Nat. Rev. Mater. 2018, 3, 18003;
- 4cJ. Y. Wang, P. Y. Xue, Y. T. Jiang, Y. Huo, X. W. Zhan, Nat. Chem. Rev. 2022, 6, 614–634.
- 5J. Hou, O. Inganäs, R. H. Friend, F. Gao, Nat. Mater. 2018, 17, 119–128.
- 6
- 6aP. Cheng, X. W. Zhan, Chem. Soc. Rev. 2016, 45, 2544–2582;
- 6bS. Park, T. Kim, S. Yoon, C. W. Koh, H. Y. Woo, H. J. Son, Adv. Mater. 2020, 32, e2002217.
- 7
- 7aH. T. Wang, C. C. Cao, H. Chen, H. J. Lai, C. X. Ke, Y. L. Zhu, H. Li, F. He, Angew. Chem. Int. Ed. 2022, 61, e202201844;
- 7bY. C. Liang, D. F. Zhang, Z. R. Wu, T. Jia, L. Luer, H. R. Tang, L. Hong, J. B. Zhang, K. Zhang, C. J. Brabec, N. Li, F. Huang, Nat. Energy 2022, 7, 1180–1190.
- 8
- 8aC. Sun, J. W. Lee, C. Y. Lee, D. C. Lee, S. N. Cho, S. K. Kwon, B. J. Kim, Y. H. Kim, Joule 2023, 7, 416–430;
- 8bC. Wang, X. Ma, Y.-F. Shen, D. Deng, H. Zhang, T. Wang, J. Zhang, J. Li, R. Wang, L. Zhang, Q. Cheng, Z. Zhang, H. Zhou, C. Tian, Z. Wei, Joule 2023, 7, 2386–2401.
- 9
- 9aC. Sun, J. W. Lee, Z. Tan, T. N. L. Phan, D. Han, H. G. Lee, S. Lee, S. K. Kwon, B. J. Kim, Y. H. Kim, Adv. Energy Mater. 2023, 13, 2301283;
- 9bJ. W. Lee, C. Sun, C. Lee, Z. P. Tan, T. N. L. Phan, H. Jeon, D. Jeong, S. K. Kwon, Y. H. Kim, B. J. Kim, ACS Energy Lett. 2023, 8, 1344–1353;
- 9cL. Zhang, Z. Zhang, D. Deng, H. Zhou, J. Zhang, Z. Wei, Adv. Sci. 2022, 9, 2202513;
- 9dC. Zhang, J. Song, J. Xue, S. Wang, Z. Ge, Y. Man, W. Ma, Y. Sun, Angew. Chem. Int. Ed. 2023, 62, e202308595.
- 10J. Wan, T. Wang, R. Sun, X. H. Wu, S. S. Wang, M. M. Zhang, J. Min, Adv. Mater. 2023, 35, e2302592.
- 11Y. Bai, Z. Zhang, Q. J. Zhou, H. Geng, Q. Chen, S. Kim, R. Zhang, C. Zhang, B. W. Chang, S. Y. Li, H. Y. Fu, L. W. Xue, H. Q. Wang, W. B. Li, W. H. Chen, M. Y. Gao, L. Ye, Y. Y. Zhou, Y. N. Ouyang, C. F. Zhang, F. Gao, C. Yang, Y. F. Li, Z. G. Zhang, Nat. Commun. 2023, 14, 2926.
- 12H. B. Chen, Z. Zhang, P. R. Wang, Y. X. Zhang, K. Q. Ma, Y. Lin, T. A. Duan, T. F. He, Z. F. Ma, G. K. Long, C. X. Li, B. Kan, Z. Y. Yao, X. J. Wan, Y. S. Chen, Energy Environ. Sci. 2023, 16, 1773–1782.
- 13
- 13aZ. Zhou, W. Liu, G. Zhou, M. Zhang, D. Qian, J. Zhang, S. Chen, S. Xu, C. Yang, F. Gao, H. Zhu, F. Liu, X. Zhu, Adv. Mater. 2020, 32, e1906324;
- 13bH. Chen, X. Cao, P. Wang, F. Huang, Y. Zhang, H. Liang, X. Bi, T.-F. He, W. Feng, Y. Guo, Z. Ma, G. Long, Z. Yao, B. Kan, C. Li, X. Wan, Y. Chen, J. Mater. Chem. A 2023, https://doi.org/10.1039/D3TA04171A;
10.1039/D3TA04171A Google Scholar
- 13cZ. Yao, X. Wan, C. Li, Y. Chen, Acc. Mater. Res. 2023, 4, 772–785.
- 14
- 14aZ. Li, Z. Zhang, H. Chen, Y. Zhang, Y. Q. Q. Yi, Z. Liang, B. Zhao, M. Li, C. Li, Z. Yao, X. Wan, B. Kan, Y. Chen, Adv. Energy Mater. 2023, 13, 2300301;
- 14bH. Chen, H. Liang, Z. Guo, Y. Zhu, Z. Zhang, Z. Li, X. Cao, H. Wang, W. Feng, Y. Zou, L. Meng, X. Xu, B. Kan, C. Li, Z. Yao, X. Wan, Z. Ma, Y. Chen, Angew. Chem. Int. Ed. 2022, 61, e202209580.
- 15X. Y. Meng, M. J. Li, K. Jin, L. X. Zhang, J. Sun, W. H. Zhang, C. Y. Yi, J. L. Yang, F. Hao, G. W. Wang, Z. Xiao, L. M. Ding, Angew. Chem. Int. Ed. 2022, 61, e202207762.
- 16Z. Z. Zhang, W. Q. Si, B. H. Wu, W. Wang, Y. W. Li, W. Ma, Y. Z. Lin, Angew. Chem. Int. Ed. 2022, 61, e202114234.
- 17
- 17aK. Jiang, Q. Y. Wei, J. Y. L. Lai, Z. X. Peng, H. K. Kim, J. Yuan, L. Ye, H. Ade, Y. P. Zou, H. Yan, Joule 2019, 3, 3020–3033;
- 17bQ. S. Liu, Y. F. Jiang, K. Jin, J. Q. Qin, J. G. Xu, W. T. Li, J. Xiong, J. F. Liu, Z. Xiao, K. Sun, S. F. Yang, X. T. Zhang, L. M. Ding, Sci. Bull. 2020, 65, 272–275.
- 18
- 18aQ. Fan, H. Fu, Q. Wu, Z. Wu, F. Lin, Z. Zhu, J. Min, H. Y. Woo, A. K.-Y. Jen, Angew. Chem. Int. Ed. 2021, 60, 15935–15943;
- 18bX. Li, S. Zhang, W. Chen, H. Han, M. Qiu, J. Chen, Q. Zhang, Chem. Eur. J. 2022, 28, e202103808.
- 19
- 19aA. Vilsmeier, A. Haack, Ber. Dtsch. Chem. Ges. A 1927, 60, 119–122;
- 19bS. Liang, C. Xiao, C. Xie, B. Liu, H. Fang, W. Li, Adv. Mater. 2023, 35, e2300629;
- 19cS. J. Liang, B. Q. Liu, S. Karuthedath, J. Wang, Y. K. He, W. L. Tan, H. Li, Y. H. Xu, N. Li, J. H. Hou, Z. Tang, F. Laquai, C. R. McNeill, C. J. Brabec, W. W. Li, Angew. Chem. Int. Ed. 2022, 61, 202209316.
- 20
- 20aE. Knoevenagel, Ber. Dtsch. Chem. Ges. 1898, 31, 2596–2619;
- 20bX. Li, F. Pan, C. Sun, M. Zhang, Z. Wang, J. Du, J. Wang, M. Xiao, L. Xue, Z. G. Zhang, C. Zhang, F. Liu, Y. Li, Nat. Commun. 2019, 10, 519.
- 21Beer, Ann. Phys. 1852, 162, 78–88.
10.1002/andp.18521620505 Google Scholar
- 22
- 22aW. W. Li, K. H. Hendriks, A. Furlan, W. S. C. Roelofs, M. M. Wienk, R. A. J. Janssen, J. Am. Chem. Soc. 2013, 135, 18942–18948;
- 22bJ. J. van Franeker, M. Turbiez, W. Li, M. M. Wienk, R. A. J. Janssen, Nat. Commun. 2015, 6, 6229.
- 23
- 23aL. Zhan, S. Li, T.-K. Lau, Y. Cui, X. Lu, M. Shi, C.-Z. Li, H. Li, J. Hou, H. Chen, Energy Environ. Sci. 2020, 13, 635–645;
- 23bL. Zhan, S. Li, Y. Li, R. Sun, J. Min, Z. Bi, W. Ma, Z. Chen, G. Zhou, H. Zhu, M. Shi, L. Zuo, H. Chen, Joule 2022, 6, 662–675.
- 24
- 24aS. E. Root, M. A. Alkhadra, D. Rodriquez, A. D. Printz, D. J. Lipomi, Chem. Mater. 2017, 29, 2646–2654;
- 24bY. P. Qin, N. Balar, Z. X. Peng, A. Gadisa, I. Angunawela, A. Bagui, S. Kashani, J. H. Hou, H. Ade, Joule 2021, 5, 2129–2147;
- 24cM. Ghasemi, N. Balar, Z. Peng, H. Hu, Y. Qin, T. Kim, J. J. Rech, M. Bidwell, W. Mask, I. McCulloch, W. You, A. Amassian, C. Risko, B. T. O'Connor, H. Ade, Nat. Mater. 2021, 20, 525–532.
- 25J. Yao, B. Qiu, Z. G. Zhang, L. Xue, R. Wang, C. Zhang, S. Chen, Q. Zhou, C. Sun, C. Yang, M. Xiao, L. Meng, Y. Li, Nat. Commun. 2020, 11, 2726.
- 26
- 26aR. Sun, T. Wang, Q. Fan, M. Wu, X. Yang, X. Wu, Y. Yu, X. Xia, F. Cui, J. Wan, X. Lu, X. Hao, A. K. Y. Jen, E. Spiecker, J. Min, Joule 2023, 7, 221–237;
- 26bC. Guan, C. Xiao, X. Liu, Z. Hu, R. Wang, C. Wang, C. Xie, Z. Cai, W. Li, Angew. Chem. Int. Ed. 2023, 62, e202312357.
- 27K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganäs, J. V. Manca, Phys. Rev. B 2010, 81, 125204.
- 28T. M. Figueira-Duarte, K. Mullen, Chem. Rev. 2011, 111, 7260–7314.
- 29
- 29aL. J. A. Koster, M. Kemerink, M. M. Wienk, K. Maturova, R. A. J. Janssen, Adv. Mater. 2011, 23, 1670–1674;
- 29bS. R. Cowan, A. Roy, A. J. Heeger, Phys. Rev. B 2010, 82, 245207;
- 29cL. J. A. Koster, V. D. Mihailetchi, P. W. M. Blom, Appl. Phys. Lett. 2006, 88, 052104.
- 30
- 30aK. Tvingstedt, K. Vandewal, F. L. Zhang, O. Inganäs, J. Phys. Chem. C 2010, 114, 21824–21832;
- 30bO. V. Mikhnenko, P. W. M. Blom, T.-Q. Nguyen, Energy Environ. Sci. 2015, 8, 1867–1888;
- 30cW. W. Li, K. H. Hendriks, A. Furlan, W. S. C. Roelofs, S. C. J. Meskers, M. M. Wienk, R. A. J. Janssen, Adv. Mater. 2014, 26, 1565–1570.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.