Foldaxane-Based Switchable [c2]Daisy Chains
Sibei Liao
Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074 Wuhan, China
Search for more papers by this authorJie Tang
Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074 Wuhan, China
Search for more papers by this authorChunmiao Ma
Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074 Wuhan, China
Search for more papers by this authorLu Yu
Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074 Wuhan, China
Search for more papers by this authorProf. Ying Tan
State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055 Shenzhen, China
Search for more papers by this authorXuanzhu Li
Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074 Wuhan, China
Search for more papers by this authorCorresponding Author
Prof. Quan Gan
Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074 Wuhan, China
Search for more papers by this authorSibei Liao
Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074 Wuhan, China
Search for more papers by this authorJie Tang
Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074 Wuhan, China
Search for more papers by this authorChunmiao Ma
Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074 Wuhan, China
Search for more papers by this authorLu Yu
Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074 Wuhan, China
Search for more papers by this authorProf. Ying Tan
State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055 Shenzhen, China
Search for more papers by this authorXuanzhu Li
Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074 Wuhan, China
Search for more papers by this authorCorresponding Author
Prof. Quan Gan
Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074 Wuhan, China
Search for more papers by this authorAbstract
Artificial molecular muscles are highly attractive in the field of molecular machinery due to their unique properties of contraction and stretching motion. However, the synthesis of molecular muscles poses formidable challenges as it is hindered by undesirable yields and poor selectivity. Herein, we present a procedure for the dynamic assembly of foldaxane-based [c2]daisy chains, wherein the hermaphroditic sequences consisting of aromatic helices and peptide rods are interlocked through inter-strand hydrogen-bonding interactions. The binding complementarity facilitates a selective and efficient assembly of [c2]daisy chain structures, inhibiting the creation of by-products. Introducing multiple recognition sites confers the system with contraction and stretching motion actuated by chemical stimuli. The rate of this muscle-like motion is calculated to be 0.8 s−1, which is 107 times faster than that of complex dissociation.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202315668-sup-0001-misc_information.pdf3.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ.-P. Collin, C. Dietrich-Buchecker, P. Gaviña, M. C. Jimenez-Molero, J.-P. Sauvage, Acc. Chem. Res. 2001, 34, 477–487;
- 1bS. Erbas-Cakmak, D. A. Leigh, C. T. McTernan, A. L. Nussbaumer, Chem. Rev. 2015, 115, 10081–10206;
- 1cC. Biagini, S. D. P. Fielden, D. A. Leigh, F. Schaufelberger, S. Di Stefano, D. Thomas, Angew. Chem. Int. Ed. 2019, 58, 9876–9880;
- 1dM. Baroncini, S. Silvi, A. Credi, Chem. Rev. 2020, 120, 200–268;
- 1eR. Costil, M. Holzheimer, S. Crespi, N. A. Simeth, B. L. Feringa, Chem. Rev. 2021, 121, 13213–13237;
- 1fJ. Echavarren, M. A. Y. Gall, A. Haertsch, D. A. Leigh, J. T. J. Spence, D. J. Tetlow, C. Tian, J. Am. Chem. Soc. 2021, 143, 5158–5165.
- 2
- 2aH. L. Frisch, E. Wasserman, J. Am. Chem. Soc. 1961, 83, 3789–3795;
- 2bA. Livoreil, C. O. Dietrich-Buchecker, J.-P. Sauvage, J. Am. Chem. Soc. 1994, 116, 9399–9400;
- 2cN. H. Evans, P. D. Beer, Chem. Soc. Rev. 2014, 43, 4658–4683;
- 2dS. Erbas-Cakmak, S. D. P. Fielden, U. Karaca, D. A. Leigh, C. T. McTernan, D. J. Tetlow, M. R. Wilson, Science 2017, 358, 340–343;
- 2eA. Li, Z. Tan, Y. Hu, Z. Lu, J. Yuan, X. Li, J. Xie, J. Zhang, K. Zhu, J. Am. Chem. Soc. 2022, 144, 2085–2089;
- 2fA. Rodríguez-Rubio, A. Savoini, F. Modicom, P. Butler, S. M. Goldup, J. Am. Chem. Soc. 2022, 144, 11927–11932.
- 3
- 3aB. Lewandowski, G. De Bo, J. W. Ward, M. Papmeyer, S. Kuschel, M. J. Aldegunde, P. M. E. Gramlich, D. Heckmann, S. M. Goldup, D. M. D'Souza, A. E. Fernandes, D. A. Leigh, Science 2013, 339, 189–193;
- 3bK. Zhu, G. Baggi, S. J. Loeb, Nat. Chem. 2018, 10, 625–630;
- 3cL.-M. Zhao, L.-S. Zheng, X. Wang, W. Jiang, Angew. Chem. Int. Ed. 2022, 61, e202214296;
- 3dY. Ren, R. Jamagne, D. J. Tetlow, D. A. Leigh, Nature 2022, 612, 78–82;
- 3eB. Shi, X. Li, Y. Chai, P. Qin, Y. Zhou, W.-J. Qu, Q. Lin, T.-B. Wei, Y. Sun, P. J. Stang, Angew. Chem. Int. Ed. 2023, 62, e202305767;
- 3fM. Gauthier, K. Fournel-Marotte, C. Clavel, P. Waelès, P. Laurent, F. Coutrot, Angew. Chem. Int. Ed. 2023, 62, e202310643.
- 4
- 4aP. R. Ashton, I. Baxter, S. J. Cantrill, M. C. T. Fyfe, P. T. Glink, J. F. Stoddart, A. J. P. White, D. J. Williams, Angew. Chem. Int. Ed. 1998, 37, 1294–1297;
10.1002/(SICI)1521-3773(19980518)37:9<1294::AID-ANIE1294>3.0.CO;2-F CAS PubMed Web of Science® Google Scholar
- 4bS. J. Rowan, S. J. Cantrill, J. F. Stoddart, A. J. P. White, D. J. Williams, Org. Lett. 2000, 2, 759–762;
- 4cB. Zheng, M. Zhang, S. Dong, J. Liu, F. Huang, Org. Lett. 2012, 14, 306–309;
- 4dJ. Rotzler, M. Mayor, Chem. Soc. Rev. 2013, 42, 44–62;
- 4eY. Yao, J. Liu, P. Zhang, K. Sun, L. Jin, S. Li, F. Huang, Z. Ni, Z. Zhang, Cryst. Growth Des. 2023, 23, 68–76.
- 5
- 5aC. J. Bruns, J. F. Stoddart, Acc. Chem. Res. 2014, 47, 2186–2199;
- 5bA. Goujon, E. Moulin, G. Fuks, N. Giuseppone, CCS Chem. 2019, 1, 83–96.
- 6M. C. Jiménez, C. Dietrich-Buchecker, J.-P. Sauvage, Angew. Chem. Int. Ed. 2000, 39, 3284–3287.
10.1002/1521-3773(20000915)39:18<3284::AID-ANIE3284>3.0.CO;2-7 CAS PubMed Web of Science® Google Scholar
- 7
- 7aR. E. Dawson, S. F. Lincoln, C. J. Easton, Chem. Commun. 2008, 3980–3982;
- 7bS. Li, D. Taura, A. Hashidzume, A. Harada, Chem. Asian J. 2010, 5, 2281–2289;
- 7cS. Ikejiri, Y. Takashima, M. Osaki, H. Yamaguchi, A. Harada, J. Am. Chem. Soc. 2018, 140, 17308–17315.
- 8
- 8aF. Coutrot, C. Romuald, E. Busseron, Org. Lett. 2008, 10, 3741–3744;
- 8bJ. Wu, K.-F. Leung, D. Benítez, J.-Y. Han, S. J. Cantrill, L. Fang, J. F. Stoddart, Angew. Chem. Int. Ed. 2008, 47, 7470–7474.
- 9
- 9aS. Tsukagoshi, A. Miyawaki, Y. Takashima, H. Yamaguchi, A. Harada, Org. Lett. 2007, 9, 1053–1055;
- 9bC. Romuald, E. Busseron, F. Coutrot, J. Org. Chem. 2010, 75, 6516–6531;
- 9cZ. Zhang, C. Han, G. Yu, F. Huang, Chem. Sci. 2012, 3, 3026–3031;
- 9dY. Yao, P. Zhang, D. Zhou, Z. Lai, S. Li, F. Huang, Z. Zhang, Chin. Chem. Lett. 2023, doi: https://doi.org/10.1016/j.cclet.2023.108712.
10.1016/j.cclet.2023.108712 Google Scholar
- 10C. J. Bruns, M. Frasconi, J. Iehl, K. J. Hartlieb, S. T. Schneebeli, C. Cheng, S. I. Stupp, J. F. Stoddart, J. Am. Chem. Soc. 2014, 136, 4714–4723.
- 11
- 11aC. Romuald, Ana Ardá, C. Clavel, J. Jiménez-Barbero, F. Coutrot, Chem. Sci. 2012, 3, 1851–1857;
- 11bK. Fournel-Marotte, F. Coutrot, Nat. Chem. 2017, 9, 105–106;
- 11cJ.-C. Chang, S.-H. Tseng, C.-C. Lai, Y.-H. Liu, S.-M. Peng, S.-H. Chiu, Nat. Chem. 2017, 9, 128–134;
- 11dW.-J. Li, W. Wang, X.-Q. Wang, M. Li, Y. Ke, R. Yao, J. Wen, G.-Q. Yin, B. Jiang, X. Li, P. Yin, H.-B. Yang, J. Am. Chem. Soc. 2020, 142, 8473–8482.
- 12
- 12aZ. Xue, M. F. Mayer, J. Am. Chem. Soc. 2010, 132, 3274–3276;
- 12bY. Guan, P. Liu, C. Deng, M. Ni, S. Xiong, C. Lin, X.-Y. Hu, J. Ma, L. Wang, Org. Biomol. Chem. 2014, 12, 1079–1089.
- 13B. Zheng, F. Wang, S. Dong, F. Huang, Chem. Soc. Rev. 2012, 41, 1621–1636.
- 14V. Koehler, A. Roy, I. Huc, Y. Ferrand, Acc. Chem. Res. 2022, 55, 1074–1085.
- 15
- 15aQ. Gan, Y. Ferrand, C. Bao, B. Kauffmann, A. Grélard, H. Jiang, I. Huc, Science 2011, 331, 1172–1175;
- 15bY. Ferrand, Q. Gan, B. Kauffmann, H. Jiang, I. Huc, Angew. Chem. Int. Ed. 2011, 50, 7572–7575;
- 15cX. Wang, B. Wicher, Y. Ferrand, I. Huc, J. Am. Chem. Soc. 2017, 139, 9350–9358.
- 16
- 16aQ. Gan, Y. Ferrand, N. Chandramouli, B. Kauffmann, C. Aube, D. Dubreuil, I. Huc, J. Am. Chem. Soc. 2012, 134, 15656–15659;
- 16bQ. Gan, X. Wang, B. Kauffmann, F. Rosu, Y. Ferrand, I. Huc, Nat. Nanotechnol. 2017, 12, 447–452.
- 17
- 17aS. A. Denisov, Q. Gan, X. Wang, L. Scarpantonio, Y. Ferrand, B. Kauffmann, G. Jonusauskas, I. Huc, N. D. McClenaghan, Angew. Chem. Int. Ed. 2016, 55, 1328–1333;
- 17bX. Wang, Q. Gan, B. Wicher, Y. Ferrand, I. Huc, Angew. Chem. Int. Ed. 2019, 58, 4205–4209;
- 17cM. Gauthier, V. Koehler, C. Clavel, B. Kauffmann, I. Huc, Y. Ferrand, F. Coutrot, Angew. Chem. Int. Ed. 2021, 60, 8380–8384;
- 17dV. Koehler, M. Gauthier, C. Yao, K. Fournel-Marotte, P. Waelès, B. Kauffmann, I. Huc, F. Coutrot, Y. Ferrand, Chem. Commun. 2022, 58, 8618–8621.
- 18Deposition numbers 2289630 (1); 2289629 (2) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 19A. S. Lane, D. A. Leigh, A. Murphy, J. Am. Chem. Soc. 1997, 119, 11092–11093.
- 20
- 20aG. Bottari, D. A. Leigh, E. M. Pérez, J. Am. Chem. Soc. 2003, 125, 13360–13361;
- 20bS. Corra, C. de Vet, J. Groppi, M. La Rosa, S. Silvi, M. Baroncini, A. Credi, J. Am. Chem. Soc. 2019, 141, 9129–9133;
- 20cA. H. G. David, R. Casares, J. M. Cuerva, A. G. Campaña, V. Blanco, J. Am. Chem. Soc. 2019, 141, 18064–18074.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.