Ultrapermeable Gel Membranes Enabling Superior Carbon Capture
Bin Zhu
State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorYan Yang
State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorLei Guo
State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorKaifang Wang
Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, Shantou, 515063 China
Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong 515063 China
Search for more papers by this authorYanqiu Lu
Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585 Singapore
Search for more papers by this authorXuezhong He
Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, Shantou, 515063 China
Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong 515063 China
Search for more papers by this authorSui Zhang
Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585 Singapore
Search for more papers by this authorCorresponding Author
Lu Shao
State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorBin Zhu
State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorYan Yang
State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorLei Guo
State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorKaifang Wang
Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, Shantou, 515063 China
Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong 515063 China
Search for more papers by this authorYanqiu Lu
Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585 Singapore
Search for more papers by this authorXuezhong He
Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, Shantou, 515063 China
Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong 515063 China
Search for more papers by this authorSui Zhang
Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585 Singapore
Search for more papers by this authorCorresponding Author
Lu Shao
State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorAbstract
Membrane technology is rapidly gaining broad attraction as a viable alternative for carbon capture to mitigate increasingly severe global warming. Emerging CO2-philic membranes have become crucial players in efficiently separating CO2 from light gases, leveraging their exceptional solubility-selectivity characteristics. However, economic and widespread deployment is greatly dependent on the boosted performance of advanced membrane materials for carbon capture. Here, we design a unique gel membrane composed of CO2-philic molecules for accelerating CO2 transportation over other gases for ultrapermeable carbon capture. The molecular design of such soft membranes amalgamates the advantageous traits of augmented permeation akin to liquid membranes and operational stability akin to solid membranes, effectively altering the membrane's free volume characteristics validated by both experiments and molecular dynamics simulation. Surprisingly, gas diffusion through the free-volume-tuned gel membrane undergoes a 9-fold improvement without compromising the separation factor for the superior solubility selectivity of CO2-philic materials, and CO2 permeability achieves a groundbreaking record of 5608 Barrer surpassing the capabilities of nonfacilitated CO2 separation materials and exceeding the upper bound line established in 2019 even by leading-edge porous polymer materials. Our designed gel membrane can maintain exceptional separation performance during prolonged operation, enabling the unparalleled potential of solubility-selective next-generation materials towards sustainable carbon capture.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202315607-sup-0001-misc_information.pdf1.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. Lane, C. Greig, A. Garnett, Nat. Clim. Change 2021, 11, 925–936;
- 1bN. Mac Dowell, P. S. Fennell, N. Shah, G. C. Maitland, Nat. Clim. Change 2017, 7, 243–249.
- 2
- 2aC. Hepburn, E. Adlen, J. Beddington, E. A. Carter, S. Fuss, N. Mac Dowell, J. C. Minx, P. Smith, C. K. Williams, Nature 2019, 575, 87–97;
- 2bD. S. Sholl, R. P. Lively, Nature 2016, 532, 435–437;
- 2cH. W. H. Lai, F. M. Benedetti, J. M. Ahn, A. M. Robinson, Y. Wang, I. Pinnau, Z. P. Smith, Y. Xia, Science 2022, 375, 1390–1392.
- 3
- 3aM. Sandru, E. M. Sandru, W. F. Ingram, J. Deng, P. M. Stenstad, L. Deng, R. J. Spontak, Science 2022, 376, 90–94;
- 3bM. Dakhchoune, L. F. Villalobos, R. Semino, L. Liu, M. Rezaei, P. Schouwink, C. E. Avalos, P. Baade, V. Wood, Y. Han, M. Ceriotti, K. V. Agrawal, Nat. Mater. 2021, 20, 362–369.
- 4
- 4aJ. G. Wijmans, R. W. Baker, J. Membr. Sci. 1995, 107, 1–21;
- 4bS. C. George, S. Thomas, Prog. Polym. Sci. 2001, 26, 985–1017.
- 5
- 5aY. Yampolskii, I. Pinnau, B. Freeman, Materials Science of Membranes for Gas and Vapor Separation, Wiley, Hoboken, 2006;
- 5bT. Tran, Y. Fu, D.-E. Jiang, H. Lin, Macromolecules 2022, 55, 9860–9867.
- 6
- 6aH. Lin, E. Van Wagner, B. D. Freeman, L. G. Toy, R. P. Gupta, Science 2006, 311, 639–642;
- 6bB. Zhu, X. Jiang, S. He, X. Yang, J. Long, Y. Zhang, L. Shao, J. Mater. Chem. A 2020, 8, 24233–24252.
- 7
- 7aS. Bandehali, A. Moghadassi, F. Parvizian, S. M. Hosseini, T. Matsuura, E. Joudaki, J. Energy Chem. 2020, 46, 30–52;
- 7bB. Comesaña-Gándara, J. Chen, C. G. Bezzu, M. Carta, I. Rose, M.-C. Ferrari, E. Esposito, A. Fuoco, J. C. Jansen, N. B. McKeown, Energy Environ. Sci. 2019, 12, 2733–2740;
- 7cM. Carta, R. Malpass-Evans, M. Croad, Y. Rogan, J. C. Jansen, P. Bernardo, F. Bazzarelli, N. B. McKeown, Science 2013, 339, 303–307.
- 8B. Zhu, Y. Yang, K. Wang, X. He, B. H. Yin, L. Shao, J. Membr. Sci. 2023, 685, 121917.
- 9
- 9aX. Jiang, S. Li, L. Shao, Energy Environ. Sci. 2017, 10, 1339–1344;
- 9bC. Ni, D. Chen, Y. Yin, X. Wen, X. Chen, C. Yang, G. Chen, Z. Sun, J. Wen, Y. Jiao, C. Wang, N. Wang, X. Kong, S. Deng, Y. Shen, R. Xiao, X. Jin, J. Li, X. Kong, Q. Zhao, T. Xie, Nature 2023, 622, 748–753.
- 10W. Yave, A. Car, S. S. Funari, S. P. Nunes, K.-V. Peinemann, Macromolecules 2009, 43, 326–333.
- 11
- 11aL. H. Sperling, in Introduction to Physical Polymer Science, 2005, pp. 349–425;
- 11bT. G. Fox, P. J. Flory, J. Polym. Sci. 1954, 14, 315–319.
- 12B. Zhu, S. He, Y. Wu, S. Li, L. Shao, Engineering 2023, 26, 220–228.
- 13J. Y. Park, D. R. Paul, J. Membr. Sci. 1997, 125, 23–39.
- 14W. Yave, A. Car, K.-V. Peinemann, J. Membr. Sci. 2010, 350, 124–129.
- 15W. Guo, T. N. Tran, H. Mondal, S. Schaefer, L. Huang, H. Lin, J. Membr. Sci. 2022, 648, 120352.
- 16H. Lin, B. D. Freeman, J. Mol. Struct. 2005, 739, 57–74.
- 17B. Zhu, S. He, Y. Yang, S. Li, C. H. Lau, S. Liu, L. Shao, Nat. Commun. 2023, 14, 1697.
- 18S. Li, X. Jiang, X. Yang, Y. Bai, L. Shao, J. Membr. Sci. 2019, 570–571, 278–285.
- 19
- 19aJ. Liu, S. Zhang, D.-E. Jiang, C. M. Doherty, A. J. Hill, C. Cheng, H. B. Park, H. Lin, Joule 2019, 3, 1881–1894;
- 19bI. Rose, C. G. Bezzu, M. Carta, B. Comesana-Gandara, E. Lasseuguette, M. C. Ferrari, P. Bernardo, G. Clarizia, A. Fuoco, J. C. Jansen, K. E. Hart, T. P. Liyana-Arachchi, C. M. Colina, N. B. McKeown, Nat. Mater. 2017, 16, 932–937;
- 19cM. Carta, M. Croad, R. Malpass-Evans, J. C. Jansen, P. Bernardo, G. Clarizia, K. Friess, M. Lanč, N. B. McKeown, Adv. Mater. 2014, 26, 3526–3531.
- 20
- 20aS. He, B. Zhu, X. Jiang, G. Han, S. Li, C. H. Lau, Y. Wu, Y. Zhang, L. Shao, Proc. Natl. Acad. Sci. USA 2021, 119, e2114964119;
- 20bB. Ghalei, K. Sakurai, Y. Kinoshita, K. Wakimoto, A. P. Isfahani, Q. Song, K. Doitomi, S. Furukawa, H. Hirao, H. Kusuda, S. Kitagawa, E. Sivaniah, Nat. Energy 2017, 2, 17086;
- 20cG. Liu, V. Chernikova, Y. Liu, K. Zhang, Y. Belmabkhout, O. Shekhah, C. Zhang, S. Yi, M. Eddaoudi, W. J. Koros, Nat. Mater. 2018, 17, 283–289.
- 21
- 21aH. Yin, J. Wang, Z. Xie, J. Yang, J. Bai, J. Lu, Y. Zhang, D. Yin, J. Y. S. Lin, Chem. Commun. 2014, 50, 3699–3701;
- 21bY. Wang, H. Jin, Q. Ma, K. Mo, H. Mao, A. Feldhoff, X. Cao, Y. Li, F. Pan, Z. Jiang, Angew. Chem. Int. Ed. 2020, 59, 4365–4369;
- 21cD. S. Chiou, H. J. Yu, T. H. Hung, Q. Lyu, C. K. Chang, J. S. Lee, L. C. Lin, D. Y. Kang, Adv. Funct. Mater. 2020, 31, 2006924.
- 22
- 22aY. Ma, F. Cui, H. Rong, J. Song, X. Jing, Y. Tian, G. Zhu, Angew. Chem. Int. Ed. 2022, 61, e202113682;
- 22bZ. Yang, Y. Belmabkhout, L. N. McHugh, D. Ao, Y. Sun, S. Li, Z. Qiao, T. D. Bennett, M. D. Guiver, C. Zhong, Nat. Mater. 2023, 22, 888–894.
- 23S. A. Felemban, C. G. Bezzu, B. Comesaña-Gándara, J. C. Jansen, A. Fuoco, E. Esposito, M. Carta, N. B. McKeown, J. Mater. Chem. A 2021, 9, 2840–2849.
- 24C. H. Lau, X. Mulet, K. Konstas, C. M. Doherty, M. A. Sani, F. Separovic, M. R. Hill, C. D. Wood, Angew. Chem. Int. Ed. Engl. 2016, 55, 1998–2001.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.