Polyoxometalate-Nanozyme-Integrated Nanomotors (POMotors) for Self-Propulsion-Promoted Synergistic Photothermal-Catalytic Tumor Therapy
Minglu Tang
College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 China
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorJiatong Ni
College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 China
Search for more papers by this authorZhengya Yue
College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Tiedong Sun
College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 China
Search for more papers by this authorCorresponding Author
Prof. Chunxia Chen
College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xing Ma
Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Lei Wang
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorMinglu Tang
College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 China
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorJiatong Ni
College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 China
Search for more papers by this authorZhengya Yue
College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Tiedong Sun
College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 China
Search for more papers by this authorCorresponding Author
Prof. Chunxia Chen
College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xing Ma
Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Lei Wang
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorAbstract
Enzyme-powered nanomotors have demonstrated promising potential in biomedical applications, especially for catalytic tumor therapy, owing to their ability of self-propulsion and bio-catalysis. However, the fragility of natural enzymes limits their environmental adaptability and also therapeutic efficacy in catalysis-enabled tumor therapy. Herein, polyoxometalate-nanozyme-based light-driven nanomotors were designed and synthesized for targeted synergistic photothermal-catalytic tumor therapy. In this construct, the peroxidase-like activity of the P2W18Fe4 polyoxometalates-based nanomotors can provide self-propulsion and facilitate their production of reactive oxygen species thus killing tumor cells, even in the weakly acidic tumor microenvironment. Conjugated polydopamine endows the nanomotors with the capability of light-driven self-propulsion behavior. After 10 min of NIR (808 nm) irradiation, along with the help of epidermal growth factor receptor antibody, the targeted accumulation and penetration of nanomotors in the tumor enabled highly efficient synergistic photothermal-catalytic therapy. This approach overcomes the disadvantages of the intrinsically fragile nature of enzyme-powered nanomotors in physiological environments and, more importantly, provides a motility-behavior promoted synergistic anti-tumor strategy.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202315031-sup-0001-misc_information.pdf2.3 MB | Supporting Information |
ange202315031-sup-0001-Supporting_Video_1.mp434.5 MB | Supporting Information |
ange202315031-sup-0001-Supporting_Video_2.mp43.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. Karimi, A. Ghasemi, P. S. Zangabad, R. Rahighi, S. M. M. Basri, H. Mirshekari, M. Amiri, Z. S. Pishabad, A. Aslani, M. Bozorgomid, D. Ghosh, A. Beyzavi, A. Vaseghi, A. R. Aref, L. Haghani, S. Bahrami, M. R. Hamblin, Chem. Soc. Rev. 2016, 45, 1457;
- 1bM. Chen, Y. Sun, H. Liu, Interdiscip. Med. 2023, 1, e20220012;
- 1cQ. Y. Wu, H. Y. Zhang, H. Y. Liu, BMEMat. 2023, 1, e12010;
- 1dZ. C. Zhang, C. W. Ding, T. D. Sun, L. Wang, C. X. Chen, Adv. Healthcare Mater. 2023, 12, 2300153; Y. Wang, J. Zhan, J. Huang, X. Wang, Z. Chen, Z. Yang, J. Li, Interdiscip. Med. 2023, 1, e20220005.
- 2
- 2aH. Y. Zhang, Z. S. Li, C. Y. Gao, X. J. Fan, Y. X. Pang, T. L. Li, Z. G. Wu, H. Xie, Q. He, Sci. Robot. 2021, 6, eaaz9519;
- 2bZ. G. Wu, Y. Chen, D. Mukasa, O. S. Pak, W. Gao, Chem. Soc. Rev. 2020, 49, 8088;
- 2cF. Soto, E. Karshalev, F. Y. Zhang, B. E. F. de Avila, A. Nourhani, J. Wang, Chem. Rev. 2022, 122, 5365;
- 2dJ. J. Wang, R. F. Dong, H. Y. Wu, Y. P. Cai, B. Y. Ren, Nano-Micro Lett. 2020, 12, 11;
- 2eY. F. Tu, F. Peng, A. A. M. Andre, Y. J. Men, M. Srinivas, D. A. Wilson, ACS Nano 2017, 11, 1957;
- 2fZ. L. Zhang, T. Xia, P. Ran, J. W. Wei, J. Meng, G. Y. Zhang, X. H. Li, Chem. Eng. J. 2023, 457, 141226;
- 2gX. Lyu, J. Y. Chen, R. T. Zhu, J. Y. Liu, L. S. Fu, J. L. Moran, W. Wang, ACS Nano 2023, 17, 11969–11993;
- 2hH. Y. Yang, L. Wang, X. Huang, Coord. Chem. Rev. 2023, 495, 215372.
- 3
- 3aH. Chen, T. Shi, Y. Wang, Z. Y. Liu, F. C. Liu, H. Y. Zhang, X. W. Wang, Z. Y. Miao, B. R. Liu, M. M. Wan, C. Mao, J. Wei, J. Am. Chem. Soc. 2021, 143, 12025;
- 3bM. M. Wan, Z. Y. Liu, T. Li, H. Chen, Q. Wang, T. T. Chen, Y. F. Tao, C. Mao, Angew. Chem. Int. Ed. 2021, 60, 16139;
- 3cQ. Q. Li, L. T. Liu, H. Q. Huo, L. C. Su, Y. Wu, H. X. Lin, X. G. Ge, J. Mu, X. Zhang, L. T. Zheng, J. B. Song, ACS Nano 2022, 16, 7947;
- 3dZ. L. Sun, Y. L. Hou, BMEMat 2023, 1, e12012.
- 4
- 4aT. Maric, A. Lovind, Z. Y. Zhang, J. Y. Geng, A. Boisen, Adv. Healthcare Mater. 2023, 12, 2203018;
- 4bL. L. Xu, F. Z. Mou, H. T. Gong, M. Luo, J. G. Guan, Chem. Soc. Rev. 2017, 46, 6905;
- 4cA. Rastmanesh, M. T. Yaraki, J. Y. Wu, Z. H. Wang, P. Ghoderao, Y. X. Gao, Y. N. Tan, Mol. Syst. Des. Eng. 2021, 6, 566–593.
- 5
- 5aH. J. Zhou, C. C. Mayorga-Martinez, S. Pane, L. Zhang, M. Pumera, Chem. Rev. 2021, 121, 4999;
- 5bC. C. Mayorga-Martinez, J. Zelenka, K. Klima, M. Kubanova, T. Ruml, M. Pumera, Adv. Mater. 2023, 35, 2300191.
- 6
- 6aW. J. Wang, E. H. Ma, P. Y. Tao, X. Y. Zhou, Y. J. Xing, L. Chen, Y. Y. Zhang, J. J. Li, K. Xu, H. Wang, S. H. Zheng, J. Mater. Sci. Technol. 2023, 148, 171;
- 6bB. Esteban-Fernandez de Avila, P. Angsantikul, J. X. Li, M. A. Lopez-Ramirez, D. E. Ramirez-Herrera, S. Thamphiwatana, C. R. Chen, J. Delezuk, R. Samakapiruk, V. Ramez, L. F. Zhang, J. Wang, Nat. Commun. 2017, 8, 272;
- 6cL. Wang, Y. J. Liu, J. He, M. J. Hourwitz, Y. L. Yang, J. T. Fourkas, X. J. Han, Z. H. Nie, Small 2015, 11, 3762–3767.
- 7
- 7aL. Wang, A. C. Hortelao, X. Huang, S. Sánchez, Angew. Chem. Int. Ed. 2019, 58, 7992–7996;
- 7bM. L. Liu, L. Chen, Z. W. Zhao, M. C. Liu, T. C. Zhao, Y. Z. Ma, Q. Y. Zhou, Y. S. Ibrahim, A. A. Elzatahry, X. M. Li, D. Y. Zhao, J. Am. Chem. Soc. 2022, 144, 3892;
- 7cL. Wang, M. Marciello, M. Estévez-Gay, P. Rodriguez, Y. L. Morato, J. Iglesias-Fernández, X. Huang, S. Osuna, M. Filice, S. Sánchez, Angew. Chem. Int. Ed. 2020, 59, 21080–210872;
- 7dX. Wang, D. Zhang, Y. Bai, J. Zhang, L. Wang, Chem. Asian J. 2022, 17, e202200498
- 8
- 8aM. Valles, S. Pujals, L. Albertazzi, S. Sanchez, ACS Nano 2022, 16, 5615;
- 8bX. Ma, A. Jannasch, U. R. Albrecht, K. Hahn, A. Miguel-Lopez, E. Schaffer, S. Sanchez, Nano Lett. 2015, 15, 7043;
- 8cD. D. Xu, J. Hu, X. Pan, S. Sanchez, X. H. Yan, X. Ma, ACS Nano 2021, 15, 11543;
- 8dJ. C. Fraire, M. Guix, A. C. Hortelao, N. Ruiz-Gonzalez, A. C. Bakenecker, P. Ramezani, C. Hinnekens, F. Sauvage, S. C. De Smedt, K. Braeckmans, S. Sanchez, ACS Nano 2023, 17, 7180;
- 8eZ. L. Yang, L. M. Wang, Z. X. Gao, X. M. Hao, M. Luo, Z. L. Yu, J. G. Guan, ACS Nano 2023, 17, 6023;
- 8fJ. Yu, Y. Li, A. Yan, Y. Gao, F. Xiao, Z. Xu, J. Xu, S. Yu, J. Liu, H. Sun, Adv. Sci. 2023, 10, 23019192;
- 8gY. R. Song, Z. Song, J. Wu, Z. Y. Li, X. Gu, C. Wang, L. Wang, J. G. Liang, Biosens. Bioelectron. 2023, 241, 115686.
- 9
- 9aD. W. Jiang, D. L. Ni, Z. T. Rosenkrans, P. Huang, X. Y. Yan, W. B. Cai, Chem. Soc. Rev. 2019, 48, 3683;
- 9bY. Xing, J. D. Xiu, M. Y. Zhou, T. L. Xu, M. Q. Zhang, H. Li, X. Y. Li, X. Du, T. Y. Ma, X. J. Zhang, ACS Nano 2023, 17, 6789.
- 10
- 10aY. Y. Huang, J. S. Ren, X. G. Qu, Chem. Rev. 2019, 119, 4357;
- 10bJ. J. X. Wu, X. Y. Wang, Q. Wang, Z. P. Lou, S. R. Li, Y. Y. Zhu, L. Qin, H. Wei, Chem. Soc. Rev. 2019, 48, 1004;
- 10cM. J. Cui, B. Xu, L. H. Wang, BMEMat 2023, 2, e12043;
- 10dM. L. Tang, Y. T. Shi, L. Lu, J. Q. Li, Z. C. Zhang, J. T. Ni, W. X. Wang, Y. H. Zhang, T. D. Sun, Z. G. Wu, Chem. Eng. J. 2022, 449, 137847.
- 11L. Sutrisno, Y. Hu, Y. H. Hou, K. Y. Cai, M. H. Li, Z. Luo, Front. Chem. 2020, 8, 680.
- 12Y. Sun, B. L. Xu, X. T. Pan, H. Y. Wang, Q. Y. Wu, S. S. Li, B. Y. Jiang, H. Y. Liu, Coord. Chem. Rev. 2023, 475, 214896.
- 13A. Bijelic, M. Aureliano, A. Rompel, Angew. Chem. Int. Ed. 2019, 58, 2980.
- 14
- 14aB. Y. Zhang, M. M. Zhao, Y. F. Qi, R. Tian, B. B. Carter, H. J. Zou, C. H. Zhang, C. Y. Wang, Sci. Rep. 2019, 9, 14832;
- 14bN. Gao, K. Dong, A. D. Zhao, H. J. Sun, Y. Wang, J. S. Ren, X. G. Qu, Nano Res. 2016, 9, 1079–1090;
- 14cB. L. Li, X. T. Xu, Y. F. Lv, Z. H. Wu, L. He, Y. F. Song, Small 2023, 19, 2305539.
- 15B. Y. Zhang, H. J. Zou, Y. F. Qi, X. M. Zhang, R. T. Sheng, Y. Zhang, R. M. Sun, L. X. Chen, R. J. Lv, Microchem. J. 2021, 164, 106013.
- 16S. M. Dong, Y. S. Dong, T. Jia, S. K. Liu, J. Liu, D. Yang, F. He, S. L. Gai, P. P. Yang, J. Lin, Adv. Mater. 2020, 32, 2002439.
- 17J. J. Hu, Y. J. Cheng, X. Z. Zhang, Nanoscale 2018, 10, 22657.
- 18H. Liu, Y. N. Ding, B. C. Yang, Z. X. Liu, Q. Y. Liu, X. Zhang, Sens. Actuators B 2018, 271, 336.
- 19S. S. Li, L. Shang, B. L. Xu, S. H. Wang, K. Gu, Q. Y. Wu, Y. Sun, Q. H. Zhang, H. L. Yang, F. R. Zhang, L. Gu, T. R. Zhang, H. Y. Liu, Angew. Chem. Int. Ed. 2019, 58, 12624.
- 20H. Yuan, X. X. Liu, L. Y. Wang, X. Ma, Bioact. Mater. 2021, 6, 1727.
- 21M. J. Xuan, Z. G. Wu, J. X. Shao, L. R. Dai, T. Y. Si, Q. He, J. Am. Chem. Soc. 2016, 138, 6492.
- 22Z. Y. Deng, F. Z. Mou, S. W. Tang, L. L. Xu, M. Luo, J. G. Guan, Appl. Mater. Today 2018, 13, 45.
- 23M. M. Wan, Q. Wang, X. Y. Li, B. Xu, D. Fang, T. Li, Y. Q. Yu, L. Y. Fang, Y. Wang, M. Wang, F. H. Wang, C. Mao, J. Shen, J. Wei, Angew. Chem. Int. Ed. 2020, 59, 14458–14465.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.