Reversal of Regioselectivity in Asymmetric C−H Bond Annulation with Bromoalkynes under Cobalt Catalysis**
Correction(s) for this article
-
Berichtigung: Correction to “Reversal of Regioselectivity in Asymmetric C−H Bond Annulation with Bromoalkynes under Cobalt Catalysis”
- Volume 136Issue 25Angewandte Chemie
- First Published online: May 7, 2024
Abir Das
Department of Chemistry, Indian Institution of Technology Kanpur, 208016 Kanpur, Uttar Pradesh, India
Search for more papers by this authorRajib Mandal
Department of Chemistry, Indian Institution of Technology Kanpur, 208016 Kanpur, Uttar Pradesh, India
Search for more papers by this authorHarihara Subramanian Ravi Sankar
Department of Chemistry, Indian Institution of Technology Kanpur, 208016 Kanpur, Uttar Pradesh, India
Search for more papers by this authorDr. Subramani Kumaran
Department of Chemistry, Indian Institution of Technology Kanpur, 208016 Kanpur, Uttar Pradesh, India
Search for more papers by this authorDr. J. Richard Premkumar
PG & Research Department of Chemistry, Bishop Heber College, 620017 Tiruchirappalli, Tamil Nadu, India
Search for more papers by this authorDipanti Borah
Department of Chemistry, Indian Institute of Technology Bombay, Powai, 400076 Mumbai, Maharashtra, India
Search for more papers by this authorCorresponding Author
Prof. Dr. Basker Sundararaju
Department of Chemistry, Indian Institution of Technology Kanpur, 208016 Kanpur, Uttar Pradesh, India
Search for more papers by this authorAbir Das
Department of Chemistry, Indian Institution of Technology Kanpur, 208016 Kanpur, Uttar Pradesh, India
Search for more papers by this authorRajib Mandal
Department of Chemistry, Indian Institution of Technology Kanpur, 208016 Kanpur, Uttar Pradesh, India
Search for more papers by this authorHarihara Subramanian Ravi Sankar
Department of Chemistry, Indian Institution of Technology Kanpur, 208016 Kanpur, Uttar Pradesh, India
Search for more papers by this authorDr. Subramani Kumaran
Department of Chemistry, Indian Institution of Technology Kanpur, 208016 Kanpur, Uttar Pradesh, India
Search for more papers by this authorDr. J. Richard Premkumar
PG & Research Department of Chemistry, Bishop Heber College, 620017 Tiruchirappalli, Tamil Nadu, India
Search for more papers by this authorDipanti Borah
Department of Chemistry, Indian Institute of Technology Bombay, Powai, 400076 Mumbai, Maharashtra, India
Search for more papers by this authorCorresponding Author
Prof. Dr. Basker Sundararaju
Department of Chemistry, Indian Institution of Technology Kanpur, 208016 Kanpur, Uttar Pradesh, India
Search for more papers by this authorA previous version of this manuscript has been deposited on a preprint server (https://doi.org/10.26434/chemrxiv-2023-1rqz1).
Abstract
Metal-catalyzed asymmetric C−H bond annulation strategy offers a versatile platform, allowing the construction of complex P-chiral molecules through atom- and step-economical fashion. However, regioselective insertion of π-coupling partner between M−C bond with high enantio-induction remain elusive. Using commercially available Co(II) salt and chiral-Salox ligands, we demonstrate an unusual protocol for the regio-reversal, enantioselective C−H bond annulation of phosphinamide with bromoalkyne through desymmetrization. The reaction proceeds through ligand-assisted enantiodetermining cyclocobaltation followed by regioselective insertion of bromoalkyne between Co−C, subsequent reductive elimination, and halogen exchange with carboxylate resulted in P-stereogenic compounds in excellent ee (up to >99 %). The isolation of cobaltacycle involved in the catalytic cycle and the outcome of control experiments provide support for a plausible mechanism.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202315005-sup-0001-12feba_o(1).cif3.4 MB | Supporting Information |
ange202315005-sup-0001-3an.cif1.3 MB | Supporting Information |
ange202315005-sup-0001-3da.cif754.1 KB | Supporting Information |
ange202315005-sup-0001-misc_information.pdf9.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aK. N. Houk, B. List, Acc. Chem. Res. 2004, 37, 487–487;
- 1bJ. S. Carey, D. Laffan, C. Thomson, M. T. Williams, Org. Biomol. Chem. 2006, 4, 2337–2347;
- 1cS. Mayer, B. List, Angew. Chem. Int. Ed. 2006, 45, 4193–4195;
- 1dS. Mukherjee, J. W. Yang, S. Hoffmann, B. List, Chem. Rev. 2007, 107, 5471–5569;
- 1eY. Park, S. Chang, Nat. Catal. 2019, 2, 219–227;
- 1fS. Aubert, T. Katsina, S. Arseniyadis, Org. Lett. 2019, 21, 2231–2235;
- 1gJ. E. Gillespie, A. Fanourakis, R. J. Phipps, J. Am. Chem. Soc. 2022, 144, 18195–18211;
- 1hC. Bolm, J. A. Gladysz, Chem. Rev. 2003, 103, 2761–2762.
- 2
- 2aH. Jiang, X. Zhao, W. Zhang, Y. Liu, H. Li, Y. Cui, Angew. Chem. Int. Ed. 2023, 62, e202214748;
- 2bW. Zhao, H.-X. Lu, W.-W. Zhang, B.-J. Li, Acc. Chem. Res. 2023, 56, 308–321;
- 2cJ. Zhou, D. Wang, W. Xu, Z. Hu, T. XU, J. Am. Chem. Soc. 2023, 145, 2081–2087;
- 2dJ. M. Ovian, P. Vojáčková, E. N. Jacobsen, Nature 2023, https://doi.org/10.1038/s41586-023-05804-3;
- 2eA. F. Zahrt, S. V. Athavale, S. E. Denmark, Chem. Rev. 2020, 120, 1620–1689;
- 2fT. Yu, Z. Ding, W. Nie, J. Jiao, H. Zhang, Q. Zhang, C. Xue, X. Duan, Y. M. A. Yamada, P. Li, Chem. Eur. J. 2020, 26, 5729–5747;
- 2gC. Prentice, J. Morrisson, A. D. Smith, E. Zysman-Colman, Beilstein J. Org. Chem. 2020, 16, 2363–2441;
- 2hT. B. Wright, P. A. Evans, Chem. Rev. 2021, 121, 9196–9242.
- 3
- 3aB. Zhan, L. Jin, B.-F. Shi, Trends Chem. 2022, 4, 220–235;
- 3bQ. Zhang, L.-S. Wu, B.-F. Shi, Chem 2022, 8, 384–413;
- 3cS. K. Sinha, G. Zanoni, D. Maiti, Asian J. Org. Chem. 2018, 7, 1178–1192;
- 3dA. Das, N. T. Patil, Chem. Eur. J. 2022, 28, e20210437;
- 3eB. Zu, Y. Guo, J. Ke, C. He, Synthesis 2021, 53, 2029–2042;
- 3fQ. Gu, Z.-J. Wu, S.-L. You, Bull. Chem. Soc. Jpn. 2021, 94, 641–647;
- 3gC.-X. Liu, Q. Gu, S.-L. You, Trends Chem. 2020, 2, 737–749.
- 4
- 4aZ. Zhuang, J.-Q. Yu, J. Am. Chem. Soc. 2020, 142, 12015–12019;
- 4bE. L. Lucas, N. Y. S. Lam, Z. Zhuang, H. S. S. Chan, D. A. Strassfeld, J.-Q. Yu, Acc. Chem. Res. 2022, 55, 537–550;
- 4cD. E. Hill, J.-Q. Yu, D. G. Blackmond, J. Org. Chem. 2020, 85, 13674–13679;
- 4dL. Hu, P.-X. Shen, Q. Shao, K. Hong, J. X. Qiao, J.-Q. Yu, Angew. Chem. Int. Ed. 2019, 58, 2134;
- 4eG. Li, J. Jiang, H. Xie, J. Wang, Chem. Eur. J. 2019, 25, 4688–4694;
- 4fC.-X. Liu, W.-W. Zhang, S.-Y. Yin, Q. Gu, S.-L. You, J. Am. Chem. Soc. 2021, 143, 14025–14040;
- 4gPan, S.-Y. Yin, S.-B. Wang, Q. Gu, S.-L. You, Angew. Chem. Int. Ed. 2021, 60, 15510;
- 4hŁ. Woźniak, J.-F. Tan, Q.-H. Nguyen, A. Madron du Vigné, V. Smal, Y.-X. Cao, N. Cramer, Chem. Rev. 2020, 120, 10516–10543;
- 4iT. Yoshino, S. Matsunaga, ACS Catal. 2021, 11, 6455–6466;
- 4jX. Yang, G. Zheng, X. Li, Angew. Chem. 2019, 131, 328–332;
- 4kH. Wang, Y. Park, Z. Bai, S. Chang, G. He, G. Chen, J. Am. Chem. Soc. 2019, 141, 7194–7201;
- 4lY. Kato, L. Lin, M. Kojima, T. Yoshino, S. Matsunaga, ACS Catal. 2021, 11, 4271–4277;
- 4mS. Satake, T. Kurihara, K. Nishikawa, T. Mochizuki, M. Hatano, K. Ishihara, T. Yoshino, S. Matsunaga, Nat. Catal. 2018, 1, 585–591;
- 4nL.-T. Huang, Y. Hirata, Y. Kato, L. Lin, M. Kojima, T. Yoshino, S. Matsunaga, Synthesis 2022, 54, 4703–4710.
- 5
- 5aL. Woz'niak, N. Cramer, Trends Chem. 2019, 1, 471–478;
- 5bJ. Loup, U. Dhawa, F. Pesciaioli, J. Wencel-Delord, L. Ackermann, Angew. Chem. Int. Ed. 2019, 58, 12803–12818;
- 5cN. Kaplaneris, L. Ackermann, Beilstein J. Org. Chem. 2022, 18, 86–88;
- 5dR. Mandal, B. Garai, B. Sundararaju, ACS Catal. 2022, 12, 3452–3506;
- 5eP. Gandeepan, T. Müller, D. Zell, G. Cera, S. Warratz, L. Ackermann, Chem. Rev. 2019, 119, 2192–2452;
- 5fT. Yoshino, Bull. Chem. Soc. Jpn. 2022, 95, 1280–1288;
- 5gT. Yoshino, S. Matsunaga, Synlett 2019, 30, 1384–1400.
- 6
- 6aT. Yoshino, S. Matsunaga, Adv. Synth. Catal. 2017, 359, 1245–1262;
- 6bY. Kommagalla, N. Chatani, Coord. Chem. Rev. 2017, 350, 117–135;
- 6cL. Lukasevics, A. Cizikovs, L. Grigorjeva, Chem. Commun. 2021, 57, 10827–10841;
- 6dA. Baccalini, S. Vergura, P. Dolui, G. Zanoni, D. Maiti, Org. Biomol. Chem. 2019, 17, 10119–10141;
- 6eN. Rajesh, N. Barsu, B. Sundararaju, Tetrahedron Lett. 2019, 59, 862–868.
- 7
- 7aK. Ozols, Y.-S. Jang, N. Cramer, J. Am. Chem. Soc. 2019, 141, 5675–5680;
- 7bA. G. Herraiz, N. Cramer, ACS Catal. 2021, 11, 11938;
- 7cK. Ozols, S. Onodera, L. Wozniak, N. Cramer, Angew. Chem. Int. Ed. 2021, 60, 655–659; Also see:
- 7dY. Zheng, W.-Y. Zhang, Q. Gu, C. Zheng, S.-L. You, Nat. Commun. 2023, 14, 1094.
- 8
- 8aF. Pesciaioli, U. Dhawa, J. C. A. Oliveira, R. Yin, M. John, L. Ackermann, Angew. Chem. Int. Ed. 2018, 57, 15425–15429;
- 8bZ.-J. Zhang, S.-W. L, J. C. A. Oliveira, Y. Li, X. Chen, S.-Q. Zhang, L.-C. Xu, T. Rogge, X. Hong, L. Ackermann, Nat. Commun. 2023, 14, 3149.
- 9
- 9aY. Hirata, D. Sekine, Y. Kato, L. Lin, M. Kojima, T. Yoshino, S. Matsunaga, Angew. Chem. Int. Ed. 2022, 61, e202205341;
- 9bT. Kurihara, M. Kojima, T. Yoshino, S. Matsunaga, Asian J. Org. Chem. 2020, 9, 368–371;
- 9cS. Fukagawa, Y. Kato, R. Tanaka, M. Kojima, T. Yoshino, S. Matsunaga, Angew. Chem. Int. Ed. 2019, 58, 1153–1157.
- 10Y.-B. Zhou, T. Zhou, P.-F. Qian, J.-Y. Li, B.-F. Shi, ACS Catal. 2022, 12, 9806–9811.
- 11
- 11aL. Grigorjeva, O. Daugulis, Angew. Chem. Int. Ed. 2014, 53, 10209–10212;
- 11bS. Rej, Y. Ano, N. Chatani, Chem. Rev. 2020, 120, 1788–1887.
- 12
- 12aS. Maity, R. Kancherla, U. Dhawa, E. Hoque, S. Pimparkar, D. Maiti, ACS Catal. 2016, 6, 5493–5499;
- 12bD. Kalsi, N. Barsu, B. Sundararaju, Chem. Eur. J. 2018, 24, 2360–2364.
- 13
- 13aB.-J. Wang, G.-X. Xu, Z.-W. Huang, X. Wu, X. Hong, Q.-J. Yao, B.-F. Shi, Angew. Chem. Int. Ed. 2022, 61, e202208912;
- 13bX.-J. Si, D. Yang, M.-C. Sun, D. Wei , M.-P. Song, J.-L. Niu, Nat. Synth. 2022, 1, 709–718;
- 13cQ.-J. Yao, J.-H. Chen, H. Song, F.-R. Huang, B.-F. Shi, Angew. Chem. Int. Ed. 2022, 61, e202202892;
- 13dJ.-H. Chen, M.-Y. Teng, F.-R. Huang, H. Song, Z.-K. Wang, H.-L. Zhuang, Y.-J. Wu, X. Wu, Q.-J. Yao, B.-F. Shi, Angew. Chem. Int. Ed. 2022, 61, e202210106;
- 13eT. Li, L. Shi, X. Wang, C. Yang, D. Yang, M.-P. Song, J.-L. Niu, Nat. Commun. 2023, 14, 5271;
- 13fZ.-K. Wang, Y.-J. Wu, Q.-J. You, B.-F. Shi, Angew. Chem. Int. Ed. 2023, 62, e202304706;
- 13gY.-J. Wu, Z.-K. Wang, Z.-S. Jai, J.-H. Chen, F.-R. Huang, B.-B. Zhan, Q.-J. Yao, B.-F. Shi, Angew. Chem. Int. Ed. 2023, 62, e202310004;
- 13hY.-J. Wu, J.-H. Chen, M.-Y. Teng, X. Li, T.-Y. Jaing, F.-R. Haung, Q.-J. Yao, B.-F. Shi, J. Am. Chem. Soc. 2023, 145, 24499–24505;
- 13iX. Wang, X.-J. Si, Y. Sun, Z. Wei, M. Xu, D. Yang, L. Shi, M.-P. Song, J.-L Niu, Org. Lett. 2023, 25, 6240–6245.
- 14
- 14aT. von Münchow, S. Dana, Y. Xu, B. Yuan, L. Ackermann, Science 2023, 379, 1036–1042;
- 14bD. Yang, X. Zhang, X. Wang, X.-J. Si, J. Wang, D. Wei, M.-P. Song, J.-L. Niu, ACS Catal. 2023, 13, 4250–4260;
- 14cQ.-J. Yao, F.-R. Huang, J.-H. Chen, M.-Y. Zhong, B. F. Shi, Angew. Chem. Int. Ed. 2023, 62, e202218533;
- 14dX.-J. Si, X. Zhao, J. Wang, X. Wang, Y. Zhang, D. Yang, M.-P. Song, J.-L. Niu, Chem. Sci. 2023, https://doi.org/10.1039/D3SC01787G; also, see:
- 14eT. Liu, W. Zhang, C. Xu, Z. Xu, D. Song, W. Qian, G. Lu, C.-J. Zhang, W. Zhong, F. Ling, Green Chem. 2023, 25, 3606–3614;
- 14fY. Lin, T. von Münchow, L. Ackermann, ACS Catal. 2023, 14, 9713–9723;
- 14gT. Li, L. Shi, X. Wang, C. Yang, D. Yang, M.-P. Song, J.-L. Niu, Nat. Commun. 2023, 14, 5271;
- 14hG. Zhou, J.-H. Chen, Q.-J. Yao, F.-R. Huang, Z.-K. Wang, B.-F. Shi, Angew. Chem. Int. Ed. 2023, 62, e202302964;
- 14iT. Li, L. Shi, X. Zhao, X. Zhao, J. Wang, X.-J. Si, D. Yang, M.-P. Song, J.-L. Niu, Org. Lett. 2023, 25, 5191–5196.
- 15
- 15aT. Piou, F. Romanov-Michailidis, M. Romanova-Michaelides, K. E. Jackson, N. Semakul, T. D. Taggart, B. S. Newell, C. D. Rithner, R. S. Paton, T. Rovis, J. Am. Chem. Soc. 2017, 139, 1296–1310;
- 15bT. Piou, F. Romanov-Michailidis, M. A. Ashley, M. Romanova-Michaelides, T. Rovis, J. Am. Chem. Soc. 2018, 140, 9587–9593;
- 15cT. Piou, T. Rovis, Acc. Chem. Res. 2018, 51, 170–180;
- 15dE. A. Trifonova, N. M. Ankudinov, M. V. Kozlov, M. Y. Sharipov, Y. V. Nelyubina, D. S. Perekalin, Chem. Eur. J. 2018, 24, 16570–16575.
- 16
- 16aB. Garai, M. R. Ali, R. Mandal, B. Sundararaju, Org. Lett. 2023, 25, 2018–2023;
- 16bB. Khan, V. Dwivedi, B. Sundararaju, Adv. Synth. Catal. 2020, 362, 1195–1200;
- 16cP. Chakraborty, N. Garg, E. Manoury, R. Poli, B. Sundararaju, ACS Catal. 2020, 10, 8023–8031;
- 16dD. Kalsi, S. Dutta, N. Barsu, M. Rueping, B. Sundararaju, ACS Catal. 2018, 8, 8115–8120;
- 16eR. Mandal, B. Emayavaramban, B. Sundararaju, Org. Lett. 2018, 20, 2835–2838;
- 16fR. Mandal, B. Sundararaju, Org. Lett. 2017, 19, 2544–2547;
- 16gM. Sen, B. Emayavaramban, N. Barsu, J. R. Premkumar, B. Sundararaju, ACS Catal. 2016, 6, 2792–2796;
- 16hN. Barsu, S. K. Bolli, B. Sundararaju, Chem. Sci. 2017, 8, 2431–2435.
- 17L. Gong, S. P. Mulcahy, D. Devarajan, K. Harms, G. Frenking, E. Meggers, Inorg. Chem. 2010, 49, 7692–7699.
- 18See the Supporting Information for more details.
- 19Deposition numbers 2298731 (3 an), 2298732 (3 da) and 2298308 (mer-(Sc,Sp)-[ΔCo-1b]) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 20Q. Zhou, H. D. Srinivas, S. Dasgupta, M. P. Watson, J. Am. Chem. Soc. 2013, 135, 3307–3310.
- 21
- 21aL. D. Caspers, B. J. Nachtsheim, Chem. Asian J. 2018, 13, 1231;
- 21bN. Sauermann, M. J. Gonzalez, L. Ackermann, Org. Lett. 2015, 17, 5316–5319;
- 21cV. G. Landge, S. P. Midya, J. Rana, D. R. Shinde, E. Balaraman, Org. Lett. 2016, 18, 5252–5255;
- 21dV. G. Landge, G. Jaiswal, E. Balaraman, Org. Lett. 2016, 18, 812–815;
- 21eE. Tan, A. I. Konovalov, G. A. Fernandez, R. Dorel, A. M. Echavarren, Org. Lett. 2017, 19, 5561–5564.
- 22
- 22aT. T. Nguyen, L. Grigorjeva, O. Daugulis, ACS Catal. 2016, 6, 551–554;
- 22bD. Kalsi, B. Sundararaju, Org. Lett. 2015, 17, 6118–6121;
- 22cO. Planas, C. J. Whiteoak, A. Company, X. Ribas, Adv. Synth. Catal. 2015, 357, 4003–4012;
- 22dR. Manoharana, M. Jeganmohan, Org. Biomol. Chem. 2018, 16, 8384–8389;
- 22eR. Mei, H. Wang, S. Warratz, S. A. Macgregor, L. Ackermann, Chem. Eur. J. 2016, 22, 6759–6763;
- 22fX.-C. Li, C. Du, H. Zhang, J.-L. Niu, M.-P. Song, Org. Lett. 2019, 21, 2863–2866;
- 22gC. Kuai, L. Wang, B. Li, Z. Yang, X. Cui, Org. Lett. 2017, 19, 2102–2105;
- 22hJ. Bora, M. Dutta, B. Chetia, Tetrahedron 2023, 132, 133248;
- 22iR. Mandal, B. Garai, B. Sundararaju, J. Org. Chem. 2021, 86, 9407–9417;
- 22jR. Mandal, N. Barsu, B. Garai, A. Das, D. Perekalin, B. Sundararaju, Chem. Commun. 2021, 57, 12167–12170;
- 22kH. Huang, S. Nakanowatari, L. Ackermann, Org. Lett. 2017, 19, 4620–4623.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.