Engineering Fluorine-rich Double Protective Layer on Zn Anode for Highly Reversible Aqueous Zinc-ion Batteries
Titi Li
School of Physics and Technology, University of Jinan, Shandong, 250022 China
Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
These authors contributed equally to this work.
Contribution: Conceptualization (lead), Data curation (lead), Investigation (lead), Resources (lead), Writing - original draft (lead)
Search for more papers by this authorSanlue Hu
Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
These authors contributed equally to this work.
Contribution: Methodology (lead), Software (lead), Writing - review & editing (equal)
Search for more papers by this authorChenggang Wang
School of Physics and Technology, University of Jinan, Shandong, 250022 China
These authors contributed equally to this work.
Contribution: Supervision (lead), Writing - review & editing (equal)
Search for more papers by this authorDun Wang
Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
Contribution: Data curation (lead), Formal analysis (lead), Investigation (lead), Methodology (lead)
Search for more papers by this authorMinwei Xu
Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
Contribution: Resources (lead), Supervision (lead)
Search for more papers by this authorCorresponding Author
Caiyun Chang
Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
Contribution: Conceptualization (lead), Data curation (lead), Investigation (lead), Methodology (lead), Resources (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Xijin Xu
School of Physics and Technology, University of Jinan, Shandong, 250022 China
Contribution: Resources (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorCorresponding Author
Cuiping Han
Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
Contribution: Methodology (lead), Resources (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorTiti Li
School of Physics and Technology, University of Jinan, Shandong, 250022 China
Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
These authors contributed equally to this work.
Contribution: Conceptualization (lead), Data curation (lead), Investigation (lead), Resources (lead), Writing - original draft (lead)
Search for more papers by this authorSanlue Hu
Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
These authors contributed equally to this work.
Contribution: Methodology (lead), Software (lead), Writing - review & editing (equal)
Search for more papers by this authorChenggang Wang
School of Physics and Technology, University of Jinan, Shandong, 250022 China
These authors contributed equally to this work.
Contribution: Supervision (lead), Writing - review & editing (equal)
Search for more papers by this authorDun Wang
Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
Contribution: Data curation (lead), Formal analysis (lead), Investigation (lead), Methodology (lead)
Search for more papers by this authorMinwei Xu
Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
Contribution: Resources (lead), Supervision (lead)
Search for more papers by this authorCorresponding Author
Caiyun Chang
Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
Contribution: Conceptualization (lead), Data curation (lead), Investigation (lead), Methodology (lead), Resources (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Xijin Xu
School of Physics and Technology, University of Jinan, Shandong, 250022 China
Contribution: Resources (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorCorresponding Author
Cuiping Han
Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
Contribution: Methodology (lead), Resources (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorAbstract
The high thermodynamic instability and side reactions of Zn-metal anode (ZMA), especially at high current densities, greatly impede the commercialization of aqueous zinc-ion batteries (AZIBs). Herein, a fluorine-rich double protective layer strategy is proposed to obtain the high reversibility of AZIBs through the introduction of a versatile tetradecafluorononane-1,9-diol (TDFND) additive in aqueous electrolyte. TDFND molecule with large adsorption energy (−1.51 eV) preferentially absorbs on the Zn anode surface to form a Zn(OR)2− (R=−CH2−(CF2)7−CH2−) cross-linking complex network, which balances space electric field and controls the Zn2+ ion flux, thus enabling the uniform and compact deposition of Zn (002) crystal planes. Meanwhile, TDFND with low Lowest unoccupied molecular orbital (LUMO, 0.10 eV) energy level is priorly decomposed to regulate the interfacial chemistry of ZMA by building a ZnF2-rich solid electrode/electrolyte interface (SEI) layer. It is found that a 14 nm-thick SEI layer delivers excellent structural integrity to suppress parasitic reactions by blocking the direct contact of active water and ZMA. Consequently, the Zn electrode exhibits a superior cycling life over 430 h at 10 mA cm−2 and a high average Coulombic efficiency of 99.8 % at 5 mA cm−2. Furthermore, a 68 mAh pouch cell delivers 80.3 % capacity retention for 1000 cycles.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202314883-sup-0001-misc_information.pdf1.7 MB | Supporting Information |
ange202314883-sup-0001-Movie_1.mp411.2 MB | Supporting Information |
ange202314883-sup-0001-Movie_2.mp49.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aW. Zhang, Y. Dai, R. Chen, Z. Xu, J. Li, W. Zong, H. Li, Z. Li, Z. Zhang, J. Zhu, F. Guo, X. Gao, Z. Du, J. Chen, T. Wang, G. He, I. P. Parkin, Angew. Chem. Int. Ed. 2023, 62, e202212695;
- 1bR. Wang, M. Yao, M. Yang, J. Zhu, J. Chen, Z. Niu, Proc. Natl. Acad. Sci. USA 2023, 120, e2221980120;
- 1cY. Wang, Z. Wang, W. K. Pang, W. Lie, J. A. Yuwono, G. Liang, S. Liu, A. M. Angelo, J. Deng, Y. Fan, K. Davey, B. Li, Z. Guo, Nat. Commun. 2023, 14, 2720.
- 2
- 2aX. Yu, Z. Li, X. Wu, H. Zhang, Q. Zhao, H. Liang, H. Wang, D. Chao, F. Wang, Y. Qiao, H. Zhou, S.-G. Sun, Joule 2023, 7, 1145–1175;
- 2bC. Li, L. Wang, J. Zhang, D. Zhang, J. Du, Y. Yao, G. Hong, Energy Storage Mater. 2022, 44, 104–135;
- 2cJ. Cao, D. Zhang, X. Zhang, Z. Zeng, J. Qin, Y. Huang, Energy Environ. Sci. 2022, 15, 499–528.
- 3Y. Wang, T. Wang, S. Bu, J. Zhu, Y. Wang, R. Zhang, H. Hong, W. Zhang, J. Fan, C. Zhi, Nat. Commun. 2023, 14, 1828.
- 4M. Wang, J. Ma, Y. Meng, J. Sun, Y. Yuan, M. Chuai, N. Chen, Y. Xu, X. Zheng, Z. Li, W. Chen, Angew. Chem. Int. Ed. 2023, 62, e202214966.
- 5Y. Qin, H. Li, C. Han, F. Mo, X. Wang, Adv. Mater. 2022, 34, e2207118.
- 6
- 6aH. Lu, D. Zhang, Q. Jin, Z. Zhang, N. Lyu, Z. Zhu, C. Duan, Y. Qin, Y. Jin, Adv. Mater. 2023, 35, e2300620;
- 6bY. Zhong, Z. Cheng, H. Zhang, J. Li, D. Liu, Y. Liao, J. Meng, Y. Shen, Y. Huang, Nano Energy 2022, 98, 107220.
- 7
- 7aJ. L. Yang, J. Li, J. W. Zhao, K. Liu, P. Yang, H. J. Fan, Adv. Mater. 2022, 34, e2202382;
- 7bS. Guo, L. Qin, C. Hu, L. Li, Z. Luo, G. Fang, S. Liang, Adv. Energy Mater. 2022, 12, 2200730.
- 8
- 8aD. Han, C. Cui, K. Zhang, Z. Wang, J. Gao, Y. Guo, Z. Zhang, S. Wu, L. Yin, Z. Weng, F. Kang, Q.-H. Yang, Nat. Sustainability 2021, 5, 205–213;
- 8bH. Jiang, L. Tang, Y. Fu, S. Wang, S. K. Sandstrom, A. M. Scida, G. Li, D. Hoang, J. J. Hong, N.-C. Chiu, K. C. Stylianou, W. F. Stickle, D. Wang, J. Li, P. A. Greaney, C. Fang, X. Ji, Nat. Sustainability 2023, 6, 806–815.
- 9
- 9aJ. Hao, X. Li, X. Zeng, D. Li, J. Mao, Z. Guo, Energy Environ. Sci. 2020, 13, 3917–3949;
- 9bF. Wang, O. Borodin, T. Gao, X. Fan, W. Sun, F. Han, A. Faraone, J. A. Dura, K. Xu, C. Wang, Nat. Mater. 2018, 17, 543–549;
- 9cS. Guo, L. Qin, T. Zhang, M. Zhou, J. Zhou, G. Fang, S. Liang, Energy Storage Mater. 2021, 34, 545–562;
- 9dY. Zhu, M. Ge, F. Ma, Q. Wang, P. Huang, C. Lai, Adv. Funct. Mater. 2023, 33, 1301964.
- 10K. Zhu, C. Guo, W. Gong, Q. Xiao, Y. Yao, K. Davey, Q. Wang, J. Mao, P. Xue, Z. Guo, Energy Environ. Sci. 2023, 16, 3612–3622.
- 11C. Yan, H. R. Li, X. Chen, X. Q. Zhang, X. B. Cheng, R. Xu, J. Q. Huang, Q. Zhang, J. Am. Chem. Soc. 2019, 141, 9422–9429.
- 12E. Peled, S. Menkin, J. Electrochem. Soc. 2017, 164, A1703–A1719.
- 13
- 13aX. Cao, X. Ren, L. Zou, M. H. Engelhard, W. Huang, H. Wang, B. E. Matthews, H. Lee, C. Niu, B. W. Arey, Y. Cui, C. Wang, J. Xiao, J. Liu, W. Xu, J.-G. Zhang, Nat. Energy 2019, 4, 796–805;
- 13bC. Zhu, D. Wu, Z. Wang, H. Wang, J. Liu, K. Guo, Q. Liu, J. Ma, Adv. Funct. Mater. 2023, 2214195;
- 13cG. Liang, Z. Tang, B. Han, J. Zhu, A. Chen, Q. Li, Z. Chen, Z. Huang, X. Li, Q. Yang, C. Zhi, Adv. Mater. 2023, 35, e2210051.
- 14
- 14aZ. Yu, D. G. Mackanic, W. Michaels, M. Lee, A. Pei, D. Feng, Q. Zhang, Y. Tsao, C. V. Amanchukwu, X. Yan, H. Wang, S. Chen, K. Liu, J. Kang, J. Qin, Y. Cui, Z. Bao, Joule 2019, 3, 2761–2776;
- 14bC. Chang, Y. Yao, R. Li, Z. H. Guo, L. Li, C. Pan, W. Hu, X. Pu, Nano Energy 2022, 93, 106871;
- 14cI. Tunn, M. J. Harrington, K. G. Blank, Biomimetics 2019, 4, 25.
- 15
- 15aW. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics 1996, 14, 33;
- 15bGaussian 16, Revision A. 03, M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, G. Petersson, H. J. I. Nakatsuji, Gaussian. 3, Wallingford CT, 2016, 3;
- 15cP. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623–11627.
- 16
- 16aJ. Hao, L. Yuan, C. Ye, D. Chao, K. Davey, Z. Guo, S. Z. Qiao, Angew. Chem. Int. Ed. 2021, 60, 7366–7375;
- 16bJ. Luo, L. Xu, Y. Zhou, T. Yan, Y. Shao, D. Yang, L. Zhang, Z. Xia, T. Wang, L. Zhang, T. Cheng, Y. Shao, Angew. Chem. Int. Ed. 2023, 62, e202302302.
- 17
- 17aJ. Wan, R. Wang, Z. Liu, L. Zhang, F. Liang, T. Zhou, S. Zhang, L. Zhang, Q. Lu, C. Zhang, Z. Guo, ACS Nano 2023, 17, 1610–1621;
- 17bY. Shang, S. Chen, N. Chen, Y. Li, J. Lai, Y. Ma, J. Chen, F. Wu, R. Chen, Energy Environ. Sci. 2022, 15, 2653–2663.
- 18D. Wang, D. Lv, H. Peng, C. Wang, H. Liu, J. Yang, Y. Qian, Angew. Chem. Int. Ed. 2023, 62, e202310290.
- 19H. Zheng, Y. Huang, J. Xiao, W. Zeng, X. Li, X. Li, M. Wang, Y. Lin, Chem. Eng. J. 2023, 468, 143834.
- 20Q. Gou, H. Luo, Q. Zhang, J. Deng, R. Zhao, O. Odunmbaku, L. Wang, L. Li, Y. Zheng, J. Li, D. Chao, M. Li, Small 2023, 19, e2207502.
- 21L. Cao, D. Li, T. Pollard, T. Deng, B. Zhang, C. Yang, L. Chen, J. Vatamanu, E. Hu, M. J. Hourwitz, L. Ma, M. Ding, Q. Li, S. Hou, K. Gaskell, J. T. Fourkas, X. Q. Yang, K. Xu, O. Borodin, C. Wang, Nat. Nanotechnol. 2021, 16, 902–910.
- 22Z. Huang, Z. Li, Y. Wang, J. Cong, X. Wu, X. Song, Y. Ma, H. Xiang, Y. Huang, ACS Energy Lett. 2023, 8, 372–380.
- 23
- 23aQ.-K. Zhang, X.-Q. Zhang, J. Wan, N. Yao, T.-L. Song, J. Xie, L.-P. Hou, M.-Y. Zhou, X. Chen, B.-Q. Li, R. Wen, H.-J. Peng, Q. Zhang, J.-Q. Huang, Nat. Energy 2023, 8, 725–735;
- 23bQ. Liu, W. Jiang, J. Xu, Y. Xu, Z. Yang, D. J. Yoo, K. Z. Pupek, C. Wang, C. Liu, K. Xu, Z. Zhang, Nat. Commun. 2023, 14, 3678;
- 23cC. Wang, Y. S. Meng, K. Xu, J. Electrochem. Soc. 2019, 166, A5184-A5186.
- 24T. Wei, Y. Ren, Y. Wang, L. Mo, Z. Li, H. Zhang, L. Hu, G. Cao, ACS Nano 2023, 17, 3765–6775.
- 25T. C. Li, Y. Lim, X. L. Li, S. Luo, C. Lin, D. Fang, S. Xia, Y. Wang, H. Y. Yang, Adv. Energy Mater. 2022, 12, 2103231.
- 26D. Wang, Q. Li, Y. Zhao, H. Hong, H. Li, Z. Huang, G. Liang, Q. Yang, C. Zhi, Adv. Energy Mater. 2022, 12, 2102707.
- 27A. Bayaguud, X. Luo, Y. Fu, C. Zhu, ACS Energy Lett. 2020, 5, 3012–3020.
- 28S. J. Zhang, J. Hao, D. Luo, P. F. Zhang, B. Zhang, K. Davey, Z. Lin, S. Z. Qiao, Adv. Energy Mater. 2021, 11, 2102010.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.