Side-Chain Chemistry Governs Hierarchical Order of Charge-Complementary β-sheet Peptide Coassemblies
Dr. Renjie Liu
J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL-32611 USA
These authors contributed equally to this work.
Search for more papers by this authorXin Dong
Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC-27695 USA
These authors contributed equally to this work.
Search for more papers by this authorDr. Dillon T. Seroski
J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL-32611 USA
These authors contributed equally to this work.
Search for more papers by this authorDr. Bethsymarie Soto Morales
J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL-32611 USA
Search for more papers by this authorDr. Kong M. Wong
School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA-30332 USA
Search for more papers by this authorAlicia S. Robang
School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA-30332 USA
Search for more papers by this authorLucas Melgar
J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL-32611 USA
Search for more papers by this authorProf. Thomas E. Angelini
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL-32611 USA
Search for more papers by this authorProf. Anant K. Paravastu
School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA-30332 USA
Search for more papers by this authorProf. Carol K. Hall
Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC-27695 USA
Search for more papers by this authorCorresponding Author
Prof. Gregory A. Hudalla
J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL-32611 USA
Search for more papers by this authorDr. Renjie Liu
J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL-32611 USA
These authors contributed equally to this work.
Search for more papers by this authorXin Dong
Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC-27695 USA
These authors contributed equally to this work.
Search for more papers by this authorDr. Dillon T. Seroski
J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL-32611 USA
These authors contributed equally to this work.
Search for more papers by this authorDr. Bethsymarie Soto Morales
J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL-32611 USA
Search for more papers by this authorDr. Kong M. Wong
School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA-30332 USA
Search for more papers by this authorAlicia S. Robang
School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA-30332 USA
Search for more papers by this authorLucas Melgar
J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL-32611 USA
Search for more papers by this authorProf. Thomas E. Angelini
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL-32611 USA
Search for more papers by this authorProf. Anant K. Paravastu
School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA-30332 USA
Search for more papers by this authorProf. Carol K. Hall
Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC-27695 USA
Search for more papers by this authorCorresponding Author
Prof. Gregory A. Hudalla
J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL-32611 USA
Search for more papers by this authorAbstract
Self-assembly of proteinaceous biomolecules into functional materials with ordered structures that span length scales is common in nature yet remains a challenge with designer peptides under ambient conditions. This report demonstrates how charged side-chain chemistry affects the hierarchical co-assembly of a family of charge-complementary β-sheet-forming peptide pairs known as CATCH(X+/Y−) at physiologic pH and ionic strength in water. In a concentration-dependent manner, the CATCH(6K+) (Ac-KQKFKFKFKQK-Am) and CATCH(6D−) (Ac-DQDFDFDFDQD-Am) pair formed either β-sheet-rich microspheres or β-sheet-rich gels with a micron-scale plate-like morphology, which were not observed with other CATCH(X+/Y−) pairs. This hierarchical order was disrupted by replacing D with E, which increased fibril twisting. Replacing K with R, or mutating the N- and C-terminal amino acids in CATCH(6K+) and CATCH(6D−) to Qs, increased observed co-assembly kinetics, which also disrupted hierarchical order. Due to the ambient assembly conditions, active CATCH(6K+)-green fluorescent protein fusions could be incorporated into the β-sheet plates and microspheres formed by the CATCH(6K+/6D−) pair, demonstrating the potential to endow functionality.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202314531-sup-0001-misc_information.pdf8.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Zhang, T. Holmes, C. Lockshin, A. Rich, Proc. Natl. Acad. Sci. USA 1993, 90, 3334–3338.
- 2
- 2aG. M. Whitesides, B. Grzybowski, Science 2002, 295, 2418–2421;
- 2bE. Gazit, Chem. Soc. Rev. 2007, 36, 1263–1269;
- 2cR. Liu, G. A. Hudalla, Molecules 2019, 24, 1450.
- 3
- 3aC. J. Bowerman, B. L. Nilsson, Pept. Sci. 2012, 98, 169–184;
- 3bY. Mandel-Gutfreund, L. M. Gregoret, J. Mol. Biol. 2002, 323, 453–461.
- 4
- 4aJ. Li, R. Xing, S. Bai, X. Yan, Soft Matter 2019, 15, 1704–1715;
- 4bA. Dasgupta, J. H. Mondal, D. Das, RSC Adv. 2013, 3, 9117–9149.
- 5
- 5aL. L. Li, Z. Y. Qiao, L. Wang, H. Wang, Adv. Mater. 2019, 31, 1804971;
- 5bG. B. Qi, Y. J. Gao, L. Wang, H. Wang, Adv. Mater. 2018, 30, 1703444.
- 6
- 6aY. Li, F. Wang, H. Cui, Bioeng. Transl. Med. 2016, 1, 306–322;
- 6bA. Yıldız, A. A. Kara, F. Acartürk, Int. J. Biol. Macromol. 2020, 148, 1084–1097;
- 6cG. A. Hudalla, T. S. Sun, J. Z. Gasiorowski, H. Han, Y. F. Tian, A. S. Chong, J. H. Collier, Nat. Mater. 2014, 13, 829–836.
- 7
- 7aJ. Olguin, A. Restuccia, D. T. Seroski, G. A. Hudalla, Peptide-based Biomaterials 2020, pp. 335–362;
10.1039/9781839161148-00335 Google Scholar
- 7bM. Barbosa, H. Simões, S. N. Pinto, A. S. Macedo, P. Fonte, D. M. F. Prazeres, Acta Biomater. 2022, 143, 216–232;
- 7cA. Restuccia, Y. F. Tian, J. H. Collier, G. A. Hudalla, Cell. Mol. Bioeng. 2015, 8, 471–487;
- 7dA. Restuccia, M. M. Fettis, S. A. Farhadi, M. D. Molinaro, B. Kane, G. A. Hudalla, ACS Biomater. Sci. Eng. 2018, 4, 3451–3459.
- 8
- 8aC. Valéry, F. Artzner, M. Paternostre, Soft Matter 2011, 7, 9583–9594;
- 8bX. Ma, Y. Zhao, C. He, X. Zhou, H. Qi, Y. Wang, C. Chen, D. Wang, J. Li, Y. Ke, Nano Lett. 2021, 21, 10199–10207.
- 9
- 9aM. S. Lamm, K. Rajagopal, J. P. Schneider, D. J. Pochan, J. Am. Chem. Soc. 2005, 127, 16692–16700;
- 9bH. Zhang, S. Lou, Z. Yu, Langmuir 2019, 35, 4710–4717.
- 10
- 10aS. Vauthey, S. Santoso, H. Gong, N. Watson, S. Zhang, Proc. Natl. Acad. Sci. USA 2002, 99, 5355–5360;
- 10bV. Haridas, Acc. Chem. Res. 2021, 54, 1934–1949.
- 11
- 11aR. Huang, Y. Wang, W. Qi, R. Su, Z. He, Nanoscale Res. Lett. 2014, 9, 653;
- 11bT. D. Jorgenson, M. Milligan, M. Sarikaya, R. M. Overney, Soft Matter 2019, 15, 7360–7368;
- 11cS. Zhang, M. A. Greenfield, A. Mata, L. C. Palmer, R. Bitton, J. R. Mantei, C. Aparicio, M. Olvera de la Cruz, S. I. Stupp, Nat. Mater. 2010, 9, 594–601.
- 12
- 12aA. Aggeli, M. Bell, L. M. Carrick, C. W. Fishwick, R. Harding, P. J. Mawer, S. E. Radford, A. E. Strong, N. Boden, J. Am. Chem. Soc. 2003, 125, 9619–9628;
- 12bY. Chen, H. X. Gan, Y. W. Tong, Macromolecules 2015, 48, 2647–2653.
- 13
- 13aT. Shimada, K. Megley, M. Tirrell, A. Hotta, Soft Matter 2011, 7, 8856–8861;
- 13bA. Kamada, A. Levin, Z. Toprakcioglu, Y. Shen, V. Lutz-Bueno, K. N. Baumann, P. Mohammadi, M. B. Linder, R. Mezzenga, T. P. Knowles, Small 2020, 16, 1904190.
- 14Y. Li, K. Li, X. Wang, B. An, M. Cui, J. Pu, S. Wei, S. Xue, H. Ye, Y. Zhao, Nano Lett. 2019, 19, 8399–8408.
- 15M. Wang, L. Du, X. Wu, S. Xiong, P. K. Chu, ACS Nano 2011, 5, 4448–4454.
- 16
- 16aG. Pandey, J. Saikia, S. Sasidharan, D. C. Joshi, S. Thota, H. B. Nemade, N. Chaudhary, V. Ramakrishnan, Sci. Rep. 2017, 7, 2726;
- 16bE. Radvar, Y. Shi, S. Grasso, C. J. Edwards-Gayle, X. Liu, M. S. Mauter, V. Castelletto, I. W. Hamley, M. J. Reece, H. S. Azevedo, ACS Appl. Mater. Interfaces 2020, 12, 22661–22672.
- 17
- 17aR. Nelson, M. R. Sawaya, M. Balbirnie, A. O. Madsen, C. Riekel, R. Grothe, D. Eisenberg, Nature 2005, 435, 773–778;
- 17bM. R. Sawaya, S. Sambashivan, R. Nelson, M. I. Ivanova, S. A. Sievers, M. I. Apostol, M. J. Thompson, M. Balbirnie, J. J. Wiltzius, H. T. McFarlane, A. O. Madsen, C. Riekel, D. Eisenberg, Nature 2007, 447, 453–457.
- 18
- 18aD. R. Boyer, B. Li, C. Sun, W. Fan, K. Zhou, M. P. Hughes, M. R. Sawaya, L. Jiang, D. S. Eisenberg, Proc. Natl. Acad. Sci. USA 2020, 117, 3592–3602;
- 18bR. Guerrero-Ferreira, N. M. Taylor, A.-A. Arteni, P. Kumari, D. Mona, P. Ringler, M. Britschgi, M. E. Lauer, A. Makky, J. Verasdonck, eLife 2019, 8, e48907.
- 19Y. Hu, R. Lin, P. Zhang, J. Fern, A. G. Cheetham, K. Patel, R. Schulman, C. Kan, H. Cui, ACS Nano 2016, 10, 880–888.
- 20A. Aggeli, M. Bell, N. Boden, L. M. Carrick, A. E. Strong, Angew. Chem. Int. Ed. 2003, 42, 5603–5606.
- 21
- 21aJ. R. Wester, J. A. Lewis, R. Freeman, H. Sai, L. C. Palmer, S. E. Henrich, S. I. Stupp, J. Am. Chem. Soc. 2020, 142, 12216–12225;
- 21bR. Freeman, M. Han, Z. Álvarez, J. A. Lewis, J. R. Wester, N. Stephanopoulos, M. T. McClendon, C. Lynsky, J. M. Godbe, H. Sangji, Science 2018, 362, 808–813;
- 21cX. Yang, H. Lu, B. Wu, H. Wang, ACS Nano 2022, 16, 18244–18252.
- 22
- 22aX. Xie, T. Zheng, W. Li, Macromol. Rapid Commun. 2020, 41, 2000534;
- 22bK. M. Wong, A. S. Robang, A. H. Lint, Y. Wang, X. Dong, X. Xiao, D. T. Seroski, R. Liu, Q. Shao, G. A. Hudalla, J. Phys. Chem. B 2021, 125, 13599–13609.
- 23P. Makam, E. Gazit, Chem. Soc. Rev. 2018, 47, 3406–3420.
- 24
- 24aQ. Shao, K. M. Wong, D. T. Seroski, Y. Wang, R. Liu, A. K. Paravastu, G. A. Hudalla, C. K. Hall, Proc. Natl. Acad. Sci. USA 2020, 117, 4710–4717;
- 24bK. M. Wong, Q. Shao, Y. Wang, D. T. Seroski, R. Liu, A. H. Lint, G. A. Hudalla, C. K. Hall, A. K. Paravastu, J. Phys. Chem. B 2021, 125, 4004–4015;
- 24cK. M. Wong, Y. Wang, D. T. Seroski, G. E. Larkin, A. K. Mehta, G. A. Hudalla, C. K. Hall, A. K. Paravastu, Nanoscale 2020, 12, 4506–4518.
- 25D. T. Seroski, X. Dong, K. M. Wong, R. Liu, Q. Shao, A. K. Paravastu, C. K. Hall, G. A. Hudalla, Commun. Chem. 2020, 3, 172.
- 26
- 26aB. Soto Morales, R. Liu, J. Olguin, A. M. Ziegler, S. M. Herrera, K. L. Backer-Kelley, K. L. Kelley, G. A. Hudalla, Biomater. Sci. 2021, 9, 2494–2507;
- 26bL. Adler-Abramovich, P. Marco, Z. A. Arnon, R. C. Creasey, T. C. Michaels, A. Levin, D. J. Scurr, C. J. Roberts, T. P. Knowles, S. J. Tendler, ACS Nano 2016, 10, 7436–7442.
- 27M. Cheon, I. Chang, C. K. Hall, Proteins Struct. Funct. Bioinf. 2010, 78, 2950–2960.
- 28D. T. Seroski, A. Restuccia, A. D. Sorrentino, K. R. Knox, S. J. Hagen, G. A. Hudalla, Cell. Mol. Bioeng. 2016, 9, 335–350.
- 29L. A. Feigin, D. I. Svergun, Structure analysis by small-angle X-ray and neutron scattering, Vol. 1, Plenum Press, New York, 1987.
10.1007/978-1-4757-6624-0 Google Scholar
- 30A. Restuccia, D. T. Seroski, K. L. Kelley, C. S. O'Bryan, J. J. Kurian, K. R. Knox, S. A. Farhadi, T. E. Angelini, G. A. Hudalla, Commun. Chem. 2019, 2, 53.
- 31C. Yuan, A. Levin, W. Chen, R. Xing, Q. Zou, T. W. Herling, P. K. Challa, T. P. Knowles, X. Yan, Angew. Chem. 2019, 131, 18284–18291.
- 32A. Huerta-Viga, S. Amirjalayer, S. R. Domingos, H. Meuzelaar, A. Rupenyan, S. Woutersen, J. Chem. Phys. 2015, 142, 212444.
- 33G. Zandomeneghi, M. R. Krebs, M. G. McCammon, M. Fandrich, Protein Sci. 2004, 13, 3314–3321.
- 34G. Meisl, J. B. Kirkegaard, P. Arosio, T. C. Michaels, M. Vendruscolo, C. M. Dobson, S. Linse, T. P. Knowles, Nat. Protoc. 2016, 11, 252–272.
- 35
- 35aJ. Wang, K. Liu, R. Xing, X. Yan, Chem. Soc. Rev. 2016, 45, 5589–5604;
- 35bR. Zuo, R. Liu, J. Olguin, G. A. Hudalla, J. Phys. Chem. B 2021, 125, 6559–6571.
- 36
- 36aK. E. Drzewiecki, D. R. Grisham, A. S. Parmar, V. Nanda, D. I. Shreiber, Biophys. J. 2016, 111, 2377–2386;
- 36bK. E. Drzewiecki, A. S. Parmar, I. D. Gaudet, J. R. Branch, D. H. Pike, V. Nanda, D. I. Shreiber, Langmuir 2014, 30, 11204–11211.
- 37N. Makarava, O. V. Bocharova, V. V. Salnikov, L. Breydo, M. Anderson, I. V. Baskakov, Protein Sci. 2006, 15, 1334–1341.
- 38R. Jansen, W. Dzwolak, R. Winter, Biophys. J. 2005, 88, 1344–1353.
- 39S. S. Rogers, M. R. Krebs, E. H. Bromley, E. van der Linden, A. M. Donald, Biophys. J. 2006, 90, 1043–1054.
- 40X. Yu, A. Carlsson, Biophys. J. 2004, 87, 3679–3689.
- 41X. Du, J. Zhou, J. Shi, B. Xu, Chem. Rev. 2015, 115, 13165–13307.
- 42R. Gallardo, N. A. Ranson, S. E. Radford, Curr. Opin. Struct. Biol. 2020, 60, 7–16.
- 43Y. Yang, R. B. Meyer, M. F. Hagan, Phys. Rev. Lett. 2010, 104, 258102.
- 44T. M. Clover, C. L. O'Neill, R. Appavu, G. Lokhande, A. K. Gaharwar, A. E. Posey, M. A. White, J. S. Rudra, J. Am. Chem. Soc. 2020, 142, 19809–19813.
- 45C. B. Andersen, H. Yagi, M. Manno, V. Martorana, T. Ban, G. Christiansen, D. E. Otzen, Y. Goto, C. Rischel, Biophys. J. 2009, 96, 1529–1536.
- 46X. Dong, R. Liu, D. T. Seroski, G. A. Hudalla, C. K. Hall, PLOS Comp. Biol., in press .
- 47Y. Fezoui, D. B. Teplow, J. Biol. Chem. 2002, 277, 36948–36954.
- 48J. L. Regier, F. Shen, S. J. Triezenberg, Proc. Natl. Acad. Sci. USA 1993, 90, 883–887.
- 49A. Chakrabartty, A. J. Doig, R. L. Baldwin, Proc. Natl. Acad. Sci. USA 1993, 90, 11332–11336.
- 50T. Lemke, M. Edte, D. Gebauer, C. Peter, J. Phys. Chem. B 2021, 125, 10335–10343.
- 51
- 51aD. M. Hall, I. R. Bruss, J. R. Barone, G. M. Grason, Nat. Mater. 2016, 15, 727–732;
- 51bA. Aggeli, I. A. Nyrkova, M. Bell, R. Harding, L. Carrick, T. C. McLeish, A. N. Semenov, N. Boden, Proc. Natl. Acad. Sci. USA 2001, 98, 11857–11862.
- 52D. R. Boyer, N. A. Mynhier, M. R. Sawaya, BioRxiv preprint 2021, 2021.2007. 2002.450971.
- 53J. Adamcik, R. Mezzenga, Soft Matter 2011, 7, 5437–5443.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.