Post-Synthetic Ensembling Design of Hierarchically Ordered FAU-type Zeolite Frameworks for Vacuum Gas Oil Hydrocracking
Corresponding Author
Rajesh Kumar Parsapur
Division of Physical Sciences and Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorAmol M. Hengne
Division of Physical Sciences and Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Saudi Arabia
Agency for Science, Technology, and Research, and Institute of Materials Research and Engineering, and Institute of Sustainability for Chemicals, Energy and Environment, Singapore, 138634 Singapore
Search for more papers by this authorGeorgian Melinte
Core Labs, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorOmer Refa Koseoglu
Catalysis Center of Excellence, Research & Development Center, Saudi Aramco, Dhahran, 31311 Saudi Arabia
Search for more papers by this authorRobert Peter Hodgkins
Advanced Materials Team, Catalyst Center of Excellence R&D Division, Research & Development Center, Saudi Aramco, Dhahran, 31311 Saudi Arabia
Search for more papers by this authorAnissa Bendjeriou-Sedjerari
Division of Physical Sciences and Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorCorresponding Author
Zhiping Lai
Division of Physical Sciences and Engineering and Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorCorresponding Author
Kuo-Wei Huang
Division of Physical Sciences and Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Saudi Arabia
Agency for Science, Technology, and Research, and Institute of Materials Research and Engineering, and Institute of Sustainability for Chemicals, Energy and Environment, Singapore, 138634 Singapore
Search for more papers by this authorCorresponding Author
Rajesh Kumar Parsapur
Division of Physical Sciences and Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorAmol M. Hengne
Division of Physical Sciences and Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Saudi Arabia
Agency for Science, Technology, and Research, and Institute of Materials Research and Engineering, and Institute of Sustainability for Chemicals, Energy and Environment, Singapore, 138634 Singapore
Search for more papers by this authorGeorgian Melinte
Core Labs, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorOmer Refa Koseoglu
Catalysis Center of Excellence, Research & Development Center, Saudi Aramco, Dhahran, 31311 Saudi Arabia
Search for more papers by this authorRobert Peter Hodgkins
Advanced Materials Team, Catalyst Center of Excellence R&D Division, Research & Development Center, Saudi Aramco, Dhahran, 31311 Saudi Arabia
Search for more papers by this authorAnissa Bendjeriou-Sedjerari
Division of Physical Sciences and Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorCorresponding Author
Zhiping Lai
Division of Physical Sciences and Engineering and Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorCorresponding Author
Kuo-Wei Huang
Division of Physical Sciences and Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Saudi Arabia
Agency for Science, Technology, and Research, and Institute of Materials Research and Engineering, and Institute of Sustainability for Chemicals, Energy and Environment, Singapore, 138634 Singapore
Search for more papers by this authorAbstract
Zeolites hold importance as catalysts and membranes across numerous industrial processes that produce most of the world's fuels and chemicals. In zeolite catalysis, the rate of molecular diffusion inside the micropore channels defines the catalyst's longevity and selectivity, thereby influencing the catalytic efficiency. Decreasing the diffusion pathlengths of zeolites to the nanoscopic level by fabricating well-organized hierarchically porous architecture can efficiently overcome their intrinsic mass-transfer limitations without losing hydrothermal stability. We report a rational post-synthetic design for synthesizing hierarchically ordered FAU-type zeolites exhibiting 2D-hexagonal (P6mm) and 3D-cubic (Ia d) mesopore channels. The synthesis involves methodical incision of the parent zeolite into unit-cell level zeolitic fragments by in situ generated base and bulky surfactants. The micellar ensembles formed by these surfactant-zeolite interactions are subsequently reorganized into various ordered mesophases by tuning the micellar curvature with ion-specific interactions (Hofmeister effect). Unlike conventional crystallization, which offers poor control over mesophase formation due to kinetic constraints, crystalline mesostructures can be developed under dilute, mild alkaline conditions by controlled reassembly. The prepared zeolites with nanometric diffusion pathlengths have demonstrated excellent yields of naphtha and middle-distillates in vacuum gas oil hydrocracking with decreased coke deposition.
Conflict of interest
Patent applications (Appl. No.—US 18/151,782; US 18/151,984, US 18/151,892; US 17/857,572) have been filed. Pilot-scale catalyst formulations are in progress.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202314217-sup-0001-misc_information.pdf3.9 MB | Supporting Information |
ange202314217-sup-0001-Movie.mp424.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. S. Cundy, P. A. Cox, Chem. Rev. 2003, 103, 663.
- 2B. Smit, T. L. Maesen, Nature 2008, 451, 671.
- 3F. Meirer, S. Kalirai, D. Morris, S. Soparawalla, Y. Liu, G. Mesu, J. C. Andrews, B. M. Weckhuysen, Sci. Adv. 2015, 1, e1400199.
- 4M. Hartmann, M. Thommes, W. Schwieger, Adv. Mater. Interfaces 2021, 8, 2001841.
- 5A. Sayari, J. Am. Chem. Soc. 2000, 122, 6504.
- 6R. J. Messinger, K. Na, Y. Seo, R. Ryoo, B. F. Chmelka, Angew. Chem. Int. Ed. 2015, 54, 927.
- 7R. Jain, A. J. Mallette, J. D. Rimer, J. Am. Chem. Soc. 2021, 143, 21446.
- 8K. Na, C. Jo, J. Kim, K. Cho, J. Jung, Y. Seo, R. J. Messinger, B. F. Chmelka, R. Ryoo, Science 2011, 333, 328.
- 9R. K. Parsapur, P. Selvam, ChemCatChem 2018, 10, 3978.
- 10H. Awala, J. P. Gilson, R. Retoux, P. Boullay, J. M. Goupil, V. Valtchev, S. Mintova, Nat. Mater. 2015, 14, 447.
- 11R. K. Parsapur, P. Selvam, Sci. Rep. 2018, 8, 16291.
- 12A. Inayat, I. Knoke, E. Spiecker, W. Schwieger, Angew. Chem. Int. Ed. 2012, 51, 1962.
- 13H. Chen, J. Wydra, X. Zhang, P.-S. Lee, Z. Wang, W. Fan, M. Tsapatsis, J. Am. Chem. Soc. 2011, 133, 12390.
- 14W. Lutz, Adv. Mater. Sci. Eng. 2014, 2014, 724248.
- 15D. Verboekend, M. Milina, S. Mitchell, J. Pérez-Ramírez, Cryst. Growth Des. 2013, 13, 5025.
- 16D. Verboekend, G. Vilé, J. Pérez-Ramírez, Cryst. Growth Des. 2012, 12, 3123.
- 17B. Wang, P. K. Dutta, Microporous Mesoporous Mater. 2017, 239, 195.
- 18I. I. Ivanova, E. E. Knyazeva, Chem. Soc. Rev. 2013, 42, 3671.
- 19G. Fleury, M. J. Mendoza-Castro, N. Linares, M. B. J. Roeffaers, J. García-Martínez, ACS Materials Lett. 2022, 4, 49.
- 20D. Kerstens, B. Smeyers, J. Van Waeyenberg, Q. Zhang, J. Yu, B. F. Sels, Adv. Mater. 2020, 32, 2004690.
- 21A. Sachse, A. Grau-Atienza, E. O. Jardim, N. Linares, M. Thommes, J. García-Martínez, Cryst. Growth Des. 2017, 17, 4289.
- 22N. Linares, A. Sachse, E. Serrano, A. Grau-Atienza, E. De Oliveira Jardim, J. Silvestre-Albero, M. A. L. Cordeiro, F. Fauth, G. Beobide, O. Castillo, J. García-Martínez, Chem. Mater. 2016, 28, 8971.
- 23V. V. Ordomsky, I. I. Ivanova, E. E. Knyazeva, V. V. Yuschenko, V. I. Zaikovskii, J. Catal. 2012, 295, 207.
- 24I. I. Ivanova, I. A. Kasyanov, A. A. Maerle, V. I. Zaikovskii, Microporous Mesoporous Mater. 2014, 189, 163.
- 25J. García-Martínez, K. Li, G. Krishnaiah, Chem. Commun. 2012, 48, 11841.
- 26D. Verboekend, G. Vilé, J. Pérez-Ramírez, Adv. Funct. Mater. 2012, 22, 916.
- 27J. García-Martínez, M. Johnson, J. Valla, K. Li, J. Y. Ying, Catal. Sci. Technol. 2012, 2, 987.
- 28J. Van Aelst, D. Verboekend, A. Philippaerts, N. Nuttens, M. Kurttepeli, E. Gobechiya, M. Haouas, S. P. Sree, J. F. M. Denayer, J. A. Martens, C. E. A. Kirschhock, F. Taulelle, S. Bals, G. V. Baron, P. A. Jacobs, B. F. Sels, Adv. Funct. Mater. 2015, 25, 7130.
- 29D. Verboekend, N. Nuttens, R. Locus, J. Van Aelst, P. Verolme, J. C. Groen, J. Perez-Ramirez, B. F. Sels, Chem. Soc. Rev. 2016, 45, 3331.
- 30J. Van Aelst, M. Haouas, E. Gobechiya, K. Houthoofd, A. Philippaerts, S. P. Sree, C. E. A. Kirschhock, P. Jacobs, J. A. Martens, B. F. Sels, F. Taulelle, J. Phys. Chem. C 2014, 118, 22573.
- 31Z. Qin, K. A. Cychosz, G. Melinte, H. El Siblani, J.-P. Gilson, M. Thommes, C. Fernandez, S. Mintova, O. Ersen, V. Valtchev, J. Am. Chem. Soc. 2017, 139, 17273.
- 32K. Na, M. Choi, W. Park, Y. Sakamoto, O. Terasaki, R. Ryoo, J. Am. Chem. Soc. 2010, 132, 4169.
- 33C. Li, M. Moliner, A. Corma, Angew. Chem. Int. Ed. 2018, 57, 15330.
- 34F. Tian, C. Cao, M. Hu, X. Ju, Q. Ru, G. Xiong, X. Liu, C. Meng, Catal. Commun. 2016, 83, 66.
- 35J. W. Ward, U. S. Patent US3867277A 1975.
- 36P. Dufresne, P. H. Bigeard, A. Billon, Catal. Today 1987, 1, 367.
- 37P. Eliášová, M. Opanasenko, P. S. Wheatley, M. Shamzhy, M. Mazur, P. Nachtigall, W. J. Roth, R. E. Morris, J. Čejka, Chem. Soc. Rev. 2015, 44, 7177.
- 38J. Li, Z. R. Gao, Q.-F. Lin, C. Liu, F. Gao, C. Lin, S. Zhang, H. Deng, A. Mayoral, W. Fan, S. Luo, X. Chen, H. He, M. A. Camblor, F.-J. Chen, J. Yu, Science 2023, 379, 283.
- 39Q. S. Huo, D. I. Margolese, G. D. Stucky, Chem. Mater. 1996, 8, 1147.
- 40A. Monnier, F. Schüth, Q. Huo, D. Kumar, D. Margolese, R. S. Maxwell, G. D. Stucky, M. Krishnamurty, P. Petroff, A. Firouzi, M. Janicke, B. F. Chmelka, Science 1993, 261, 1299.
- 41C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature 1992, 359, 710.
- 42B. Kang, H. Tang, Z. Zhao, S. Song, ACS Omega 2020, 5, 6229.
- 43L. Abezgauz, K. Kuperkar, P. A. Hassan, O. Ramon, P. Bahadur, D. Danino, J. Colloid Interface Sci. 2010, 342, 83.
- 44D. P. Chen, C. Yu, C.-Y. Chang, Y. Wan, J. M. J. Frechet, W. A. Goddard III, M. S. Diallo, Environ. Sci. Technol. 2012, 46, 10718.
- 45Q. Huo, D. I. Margolese, U. Ciesla, P. Feng, T. E. Gier, P. Sieger, R. Leon, P. M. Petroff, F. Schüth, G. D. Stucky, Nature 1994, 368, 317.
- 46R. A. Schoonheydt, B. M. Weckhuysen, Phys. Chem. Chem. Phys. 2009, 11, 2794.
- 47S. Greiser, M. Hunger, C. Jäger, Solid State Nucl. Magn. Reson. 2016, 79, 6.
- 48K. U. Gore, A. Abraham, S. G. Hegde, R. Kumar, J.-P. Amoureux, S. Ganapathy, J. Phys. Chem. B 2002, 106, 6115.
- 49N. V. Krishna, S. Anuradha, R. Ganesh, V. V. Kumar, P. Selvam, ChemCatChem 2018, 10, 5610.
- 50X. Li, H. Han, W. Xu, S.-J. Hwang, Z. Shi, P. Lu, A. Bhan, M. Tsapatsis, J. Am. Chem. Soc. 2022, 144, 9324.
- 51K. Chen, Z. Gan, S. Horstmeier, J. L. White, J. Am. Chem. Soc. 2021, 143, 6669.
- 52L. Wu, P. C. M. M. Magusin, V. Degirmenci, M. Li, S. M. T. Almutairi, X. Zhu, B. Mezari, E. J. M. Hensen, Microporous Mesoporous Mater. 2014, 189, 144.
- 53A. Gutiérrez, J. M. Arandes, P. Castaño, M. Olazar, J. Bilbao, Energy Fuels 2012, 26, 5897.
- 54M. Ibáñez, M. Gamero, J. Ruiz-Martínez, B. M. Weckhuysen, A. T. Aguayo, J. Bilbao, P. Castaño, Catal. Sci. Technol. 2016, 6, 296.
- 55H. O. Mohamed, R. K. Parsapur, I. Hita, J. L. Cerrillo, A. Ramírez, K.-W. Huang, J. Gascon, P. Castaño, Appl. Catal. B 2022, 316, 121582.
- 56Comment added on 18 December 2023, after the first online publication on 16 October 2023: Figure and the associated caption have been updated. Figures S15–S17 and GC raw data have been added to the Supporting Information.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.