Dearomatization-Rearomatization Reaction of Metal-Polarized Aza-ortho-Quinone Methides
Bao-Cheng Wang
CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, 430079 Wuhan, Hubei, P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Li Rao
CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, 430079 Wuhan, Hubei, P. R. China
These authors contributed equally to this work.
Search for more papers by this authorKai-Xin Fang
State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, P. R. China
These authors contributed equally to this work.
Search for more papers by this authorBao-Le Qu
CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, 430079 Wuhan, Hubei, P. R. China
Search for more papers by this authorFen-Ya Xiong
CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, 430079 Wuhan, Hubei, P. R. China
Search for more papers by this authorYing Feng
State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Ying Tan
State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Liang-Qiu Lu
CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, 430079 Wuhan, Hubei, P. R. China
State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, 730000 Lanzhou, P. R. China
School of Chemistry and Chemical Engineering, Henan Normal University, 453007 Xinxiang, Henan, China
Search for more papers by this authorProf. Wen-Jing Xiao
CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, 430079 Wuhan, Hubei, P. R. China
Search for more papers by this authorBao-Cheng Wang
CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, 430079 Wuhan, Hubei, P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Li Rao
CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, 430079 Wuhan, Hubei, P. R. China
These authors contributed equally to this work.
Search for more papers by this authorKai-Xin Fang
State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, P. R. China
These authors contributed equally to this work.
Search for more papers by this authorBao-Le Qu
CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, 430079 Wuhan, Hubei, P. R. China
Search for more papers by this authorFen-Ya Xiong
CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, 430079 Wuhan, Hubei, P. R. China
Search for more papers by this authorYing Feng
State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Ying Tan
State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Liang-Qiu Lu
CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, 430079 Wuhan, Hubei, P. R. China
State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, 730000 Lanzhou, P. R. China
School of Chemistry and Chemical Engineering, Henan Normal University, 453007 Xinxiang, Henan, China
Search for more papers by this authorProf. Wen-Jing Xiao
CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, 430079 Wuhan, Hubei, P. R. China
Search for more papers by this authorAbstract
Metal-polarized aza-ortho-quinone methides (aza-o-QMs) are a unique and efficient handle for azaheterocycle synthesis. Despite great achievements, the potential of these reactive intermediates has not yet been fully exploited, especially the new reaction modes. Herein, we disclosed an unprecedented dearomatization process of metal-polarized aza-o-QMs, affording transient dearomatized spiroaziridine intermediates. Based on this serendipity, we accomplished three sequential dearomatization-rearomatization reactions of benzimidazolines with aza-sulfur ylides, enabling the divergent synthesis of bis-nitrogen heterocycles with high efficiency and flexibility. Moreover, experimental and theoretical studies were performed to explain the proposed mechanisms and observed selectivity. Further cellular evaluation of the dibenzodiazepine products identified a hit compound for new antitumor drugs.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202301592-sup-0001-misc_information.pdf18.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. S. Singh, Reactive Intermediates in Organic Synthesis, Wiley-VCH, Weinheim, 2014.
- 2For two pioneering work, see:
- 2aG. Smolinsky, J. Org. Chem. 1961, 26, 4108–4110;
- 2bE. M. Burgess, L. McCullagh, J. Am. Chem. Soc. 1966, 88, 1580–1581; for selected books and reviews, see:
- 2cS. E. Rokita, Quinone Methides, Wiley: Hoboken, 2009;
10.1002/9780470452882 Google Scholar
- 2dA. A. Jaworski, K. A. Scheidt, J. Org. Chem. 2016, 81, 10145–10153;
- 2eB. Yanga, S. Gao, Chem. Soc. Rev. 2018, 47, 7926–7953;
- 2fH.-H. Liao, S. Miñoza, S.-C. Lee, M. Rueping, Chem. Eur. J. 2022, 28, e202201112.
- 3For recent reviews, see:
- 3aO. Pàmies, J. Margalef, S. Cañellas, J. James, E. Judge, P. J. Guiry, C. Moberg, J.-E. Bäckvall, A. Pfaltz, M. A. Pericàs, M. Diéguez, Chem. Rev. 2021, 121, 4373–4505;
- 3bB. Niu, Y. Wei, M. Shi, Org. Chem. Front. 2021, 8, 3475–3501;
- 3cM.-M. Zhang, B.-L. Qu, B. Shi, W.-J. Xiao, L.-Q. Lu, Chem. Soc. Rev. 2022, 51, 4146–4174;
- 3dJ. Zhang, Y. Chen, Q. Wang, J. Shen, Y. Liu, W. Deng, Chin. J. Org. Chem. 2022, 42, 3051–3101.
- 4
- 4aC. Wang, J. A. Tunge, J. Am. Chem. Soc. 2008, 130, 8118–8119;
- 4bT.-R. Li, F. Tan, L.-Q. Lu, Y. Wei, Y.-N. Wang, Y.-Y. Liu, Q.-Q. Yang, J.-R. Chen, D.-Q. Shi, W.-J. Xiao, Nat. Commun. 2014, 5, 5500–5509.
- 5
- 5aQ. Wang, T.-R. Li, L.-Q. Lu, M.-M. Li, K. Zhang, W.-J. Xiao, J. Am. Chem. Soc. 2016, 138, 8360–8363;
- 5bT.-R. Li, B.-Y. Cheng, Y.-N. Wang, M.-M. Zhang, L.-Q. Lu, W.-J. Xiao, Angew. Chem. Int. Ed. 2016, 55, 12422–12426.
- 6
- 6aN. Punna, P. Das, V. Gouverneur, N. Shibata, Org. Lett. 2018, 20, 1526–1529;
- 6bH. Uno, N. Punna, E. Tokunaga, M. Shiro, N. Shibata, Angew. Chem. Int. Ed. 2020, 59, 8187–8194.
- 7Selected examples via Pd catalysis, see:
- 7aL. A. Leth, F. Glaus, M. Meazza, L. Fu, M. K. Thøgersen, E. A. Bitsch, K. A. Jørgensen, Angew. Chem. Int. Ed. 2016, 55, 15272–15276;
- 7bC. Guo, M. Fleige, D. Janssen-Müller, C. G. Daniliuc, F. Glorius, J. Am. Chem. Soc. 2016, 138, 7840–7843;
- 7cM.-M. Li, Y. Wei, J. Liu, H.-W. Cheng, L.-Q. Lu, W.-J. Xiao, J. Am. Chem. Soc. 2017, 139, 14707–14713;
- 7dG.-J. Mei, C.-Y. Bian, G.-H. Li, S.-L. Xu, W.-Q. Zheng, F. Shi, Org. Lett. 2017, 19, 3219–3222; selected examples via Cu catalysis, see:
- 7eJ. Song, Z.-J. Zhang, L.-Z. Gong, Angew. Chem. Int. Ed. 2017, 56, 5212–5216;
- 7fX. Lu, L. Ge, C. Cheng, J. Chen, W. Cao, X. Wu, Chem. Eur. J. 2017, 23, 7689–7693;
- 7gW. Shao, S.-L. You, Chem. Eur. J. 2017, 23, 12489–12493;
- 7hZ.-J. Zhang, L. Zhang, R.-L. Geng, J. Song, X.-H. Chen, L.-Z. Gong, Angew. Chem. Int. Ed. 2019, 58, 12190–12194; for an example via Fe catalysis, see:
- 7iQ. Wang, X.-T. Qi, L.-Q. Lu, T.-R. Li, Z.-G. Yuan, K. Zhang, B.-J. Li, Y. Lan, W.-J. Xiao, Angew. Chem. Int. Ed. 2016, 55, 2840–2844; selected examples via Ir catalysis, see:
- 7jX. Liang, T.-Y. Zhang, X.-Y. Zeng, Y. Zheng, K. Wei, Y.-R. Yang, J. Am. Chem. Soc. 2017, 139, 3364–3367;
- 7kM. Sun, X. Wan, S.-J. Zhou, G.-J. Mei, F. Shi, Chem. Commun. 2019, 55, 1283–1286;
- 7lS. Singha, E. Serrano, S. Mondal, C. G. Daniliuc, F. Glorius, Nat. Catal. 2020, 3, 48–54;
- 7mW.-L. Yang, Y.-L. Wang, W. Li, B.-M. Gu, S.-W. Wang, X. Luo, B.-X. Tian, W.-P. Deng, ACS Catal. 2021, 11, 12557–12564.
- 8For two selected reviews on aza-sulfur ylides, see:
- 8aT. L. Gilchrist, C. J. Moody, Chem. Rev. 1977, 77, 409–435;
- 8bX. Tian, L. Song, A. S. K. Hashmi, Chem. Eur. J. 2020, 26, 3197–3204; for two recent reviews on acyl sulfur ylides, see:
- 8cL.-Q. Lu, T.-R. Li, Q. Wang, W.-J. Xiao, Chem. Soc. Rev. 2017, 46, 4135–4149;
- 8dD. Kaiser, I. Klose, R. Oost, J. Neuhaus, N. Maulide, Chem. Rev. 2019, 119, 8701–8780.
- 9For selected examples, see:
- 9aX. Tian, L. Song, M. Rudolph, F. Rominger, T. Oeser, A. S. K. Hashmi, Angew. Chem. Int. Ed. 2019, 58, 3589–3593;
- 9bK. O. Marichev, K. Wang, K. Dong, N. Greco, L. A. Massey, Y. Deng, H. Arman, M. P. Doyle, Angew. Chem. Int. Ed. 2019, 58, 16188–16192;
- 9cX. Xie, J. Sun, Org. Lett. 2021, 23, 8921–8925.
- 10
- 10aY. Wei, S. Liu, M.-M. Li, Y. Li, Y. Lan, L.-Q. Lu, W.-J. Xiao, J. Am. Chem. Soc. 2019, 141, 133–137;
- 10bQ.-L. Zhang, Q. Xiong, M.-M. Li, W. Xiong, B. Shi, Y. Lan, L.-Q. Lu, W.-J. Xiao, Angew. Chem. Int. Ed. 2020, 59, 14096–14100;
- 10cM.-M. Zhang, P. Chen, W. Xiong, X.-S. Hui, L.-Q. Lu, W.-J. Xiao, CCS Chem. 2021, 3, 3383–3392;
- 10dB. Shi, J.-B. Liu, Z.-T. Wang, L. Wang, Angew. Chem. Int. Ed. 2022, 61, e202117215;
- 10eB.-C. Wang, T.-T. Fang, F.-Y. Xiong, P. Chen, K.-X. Fang, Y. Tan, L.-Q. Lu, W.-J. Xiao, J. Am. Chem. Soc. 2022, 144, 19932–19941;
- 10fX. Jiang, W. Xiong, S. Deng, F.-D. Lu, Y. Jia, Q. Yang, L.-Y. Xue, X.-T. Qi, J. A. Tunge, L.-Q. Lu, W.-J. Xiao, Nat. Catal. 2022, 5, 788–797.
- 11Deposition Numbers 2044504 (for 3a), 2044505 (for 5a) and 2106491 (for 7a) contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 12Q. Cheng, H.-F. Tu, C. Zheng, J.-P. Qu, G. Helmchen, S. L. You, Chem. Rev. 2019, 119, 1855–1969.
- 13
- 13aE. P. Gillis, K. J. Eastman, M. D. Hill, D. J. Donnelly, N. A. Meanwell, J. Med. Chem. 2015, 58, 8315–8359;
- 13bS. Schiesser, H. Chepliaka, J. Kollback, T. Quennesson, W. Czechtizky, R. J. Cox, J. Med. Chem. 2020, 63, 13076–13089.
- 14For recent reviews, see:
- 14aD.-Y. Zhang, X.-P. Hu, Tetrahedron Lett. 2015, 56, 283–295;
- 14bS. W. Roh, K. Choi, C. Lee, Chem. Rev. 2019, 119, 4293–4356; for recent selected examples, see:
- 14cX. Gao, R. Cheng, Y.-L. Xiao, X.-L. Wan, X. Zhang, Chem 2019, 5, 2987–2999;
- 14dR.-Z. Li, D.-Q. Liu, D.-W. Niu, Nat. Catal. 2020, 3, 672–680;
- 14eW. Guo, L. Zuo, M. Cui, B. Yan, S. Ni, J. Am. Chem. Soc. 2021, 143, 7629–7634;
- 14fH.-H. Kong, C. Zhu, S. Deng, G. Xu, R. Zhao, C. Yao, H.-M. Xiang, C. Zhao, X. Qi, H. Xu, J. Am. Chem. Soc. 2022, 144, 21347–21355;
- 14gJ.-S. Ma, H.-Y. Lu, Y.-W. Chen, W.-C. Zhao, Y.-Z. Sun, R.-P. Li, H.-X. Wang, G.-Q. Lin, Z.-T. He, Nat. Synth. 2023, 2, 37–48.
- 15
- 15aH. Shang, Y. Wang, D.-Y. Tian, J. Feng, Y. Tang, Angew. Chem. Int. Ed. 2014, 53, 5662–5666;
- 15bE. E. Schultz, E. Lindsay, V. N. G. Sarpong, Angew. Chem. Int. Ed. 2014, 53, 9904–9908.
- 16
- 16aJ. D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 2008, 10, 6615–6620;
- 16bA. V. Marenich, C. J. Cramer, D. G. J. Truhlar, Phys. Chem. B 2009, 113, 6378–6396;
- 16cM. J. T. Frisch, Gaussian 09, revision D.01, Gaussian, Inc., Wallingford, CT, 2013.
- 17D. de Souza, D. O. C. Mariano, F. Nedel, J. Med. Chem. 2015, 58, 3329–3339.
- 18
- 18aF. W. Sum, J. Dusza, E. D. Santos, Bioorg. Med. Chem. Lett. 2003, 13, 2195–2198;
- 18bC. P. Kumar, T. S. Reddy, P. S. Mainkar, V. Bansal, R. Shukla, S. Chandrasekhar, H. M. Hügel, Eur. J. Med. Chem. 2016, 108, 674–686;
- 18cK. Cao, J. Yan, F. Yan, T. Yin, Mol. Diversity 2021, 25, 1111–1122.
- 19L. Zhao, T. Fan, Z. Shi, C. Ding, C. Zhang, Z. Yuan, Q. Sun, C. Tan, B. Chu, Y. Jiang, Eur. J. Med. Chem. 2021, 213, 113173–113185.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.