Alcohol-Induced Strong Metal-Support Interactions in a Supported Copper/ZnO Catalyst
Shiqing Jin
State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
These authors contributed equally to this work.
Search for more papers by this authorZekai Zhang
State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
These authors contributed equally to this work.
Search for more papers by this authorDidi Li
State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorProf. Yiming Wang
State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorProf. Cheng Lian
State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorCorresponding Author
Prof. Minghui Zhu
State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorShiqing Jin
State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
These authors contributed equally to this work.
Search for more papers by this authorZekai Zhang
State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
These authors contributed equally to this work.
Search for more papers by this authorDidi Li
State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorProf. Yiming Wang
State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorProf. Cheng Lian
State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorCorresponding Author
Prof. Minghui Zhu
State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorAbstract
Tuning the strong metal-support interaction (SMSI) in metal catalysts is a promising strategy to improve their catalytic performance. In this article, we systematically investigated the influences of different alcohol/water mixtures on the evolution of the interfacial structure of Cu/ZnO catalysts in the reduction stage. A series of in situ characterization and theoretical simulation studies were performed to elucidate the various mechanisms of alcohol induced SMSI. It was found that when methanol/water is added to H2 during the reduction pretreatment, more oxygen vacancies are formed on the ZnO support, which facilitates the dissociation of H2O and the hydroxylation of ZnO species. Such promotion eventually favors the SMSI between Cu and ZnO and increases the catalytic activity for the methanol steam reforming reaction. In contrast, the addition of ethanol/water and 1-propanol/water during reduction leads to a physical blockage of the catalyst by alcohol molecules, poisoning the active Cu sites and limiting the migration of ZnO species.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202301563-sup-0001-misc_information.pdf838.5 KB | Supporting Information |
ange202301563-sup-0001-Supplementary_Movie_1_Zn9O7.mp48.1 MB | Supporting Information |
ange202301563-sup-0001-Supplementary_Movie_2_Zn9O7H3.mp48.4 MB | Supporting Information |
ange202301563-sup-0001-Supplementary_Movie_3_Zn9O9H3.mp48.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1K. Larmier, W. C. Liao, S. Tada, E. Lam, R. Verel, A. Bansode, A. Urakawa, A. Comas-Vives, C. Copéret, Angew. Chem. Int. Ed. 2017, 56, 2318–2323.
- 2S. Chen, A. M. Abdel-Mageed, C. Mochizuki, T. Ishida, T. Murayama, J. Rabeah, M. Parlinska-Wojtan, A. Brückner, R. J. Behm, ACS Catal. 2021, 11, 9022–9033.
- 3M. Zhu, P. Tian, X. Cao, J. Chen, T. Pu, B. Shi, J. Xu, J. Moon, Z. Wu, Y. F. Han, Appl. Catal. B 2021, 282, 119561.
- 4Z. Zhang, X. Chen, J. Kang, Z. Yu, J. Tian, Z. Gong, A. Jia, R. You, K. Qian, S. He, B. Teng, Y. Cui, Y. Wang, W. Zhang, W. Huang, Nat. Commun. 2021, 12, 6–14.
- 5S. Kattel, P. J. Ramírez, J. G. Chen, J. A. Rodriguez, P. Liu, Science 2017, 355, 1296–1299.
- 6K. Ploner, M. Watschinger, P. D. Kheyrollahi Nezhad, T. Götsch, L. Schlicker, E. M. Köck, A. Gurlo, A. Gili, A. Doran, L. Zhang, N. Köwitsch, M. Armbrüster, S. Vanicek, W. Wallisch, C. Thurner, B. Klötzer, S. Penner, J. Catal. 2020, 391, 497–512.
- 7M. Xu, S. He, H. Chen, G. Cui, L. Zheng, B. Wang, M. Wei, ACS Catal. 2017, 7, 7600–7609.
- 8S. S. Wang, H. Y. Su, X. K. Gu, W. X. Li, J. Phys. Chem. C 2017, 121, 21553–21559.
- 9Q. Fu, T. Wagner, Surf. Sci. Rep. 2007, 62, 431–498.
- 10T. W. van Deelen, C. Hernández Mejía, K. P. de Jong, Nat. Catal. 2019, 2, 955–970.
- 11R. L. G. S. J. Tauster, S. C. Fung, J. Am. Chem. Soc. 1978, 100, 170–175.
- 12S. J. Tauster, S. C. Fung, J. Catal. 1978, 55, 29–35.
- 13X. Yuan, T. Pu, M. Gu, M. Zhu, J. Xu, ACS Catal. 2021, 11, 11966–11972.
- 14X. Wang, Y. Liu, X. Peng, B. Lin, Y. Cao, L. Jiang, ACS Appl. Energy Mater. 2018, 1, 1408–1414.
- 15S. Kuld, M. Thorhauge, H. Falsig, C. F. Elkjær, S. Helveg, I. Chorkendorff, J. Sehested, Science 2016, 352, 969–974.
- 16D. Li, F. Xu, X. Tang, S. Dai, T. Pu, X. Liu, P. Tian, F. Xuan, Z. Xu, I. E. Wachs, M. Zhu, Nat. Catal. 2022, 5, 99–108.
- 17Y. Zhang, X. Yang, X. Yang, H. Duan, H. Qi, Y. Su, B. Liang, H. Tao, B. Liu, D. Chen, X. Su, Y. Huang, T. Zhang, Nat. Commun. 2020, 11, 3185.
- 18W. Wang, X. Li, Y. Zhang, R. Zhang, H. Ge, J. Bi, M. Tang, Catal. Sci. Technol. 2017, 7, 4413–4421.
- 19H. Tang, Y. Su, B. Zhang, A. F. Lee, M. A. Isaacs, K. Wilson, L. Li, Y. Ren, J. Huang, M. Haruta, B. Qiao, X. Liu, C. Jin, D. Su, J. Wang, T. Zhang, Sci. Adv. 2017, 3, e1700231.
- 20J. Zhang, H. Wang, L. Wang, S. Ali, C. Wang, L. Wang, X. Meng, B. Li, D. S. Su, F. S. Xiao, J. Am. Chem. Soc. 2019, 141, 2975–2983.
- 21T. Lunkenbein, F. Girgsdies, T. Kandemir, N. Thomas, M. Behrens, R. Schlögl, E. Frei, Angew. Chem. Int. Ed. 2016, 55, 12708–12712.
- 22S. Bonanni, K. Aït-mansour, H. Brune, W. Harbich, ACS Catal. 2011, 2, 385–389.
- 23L. Wang, L. Wang, X. Meng, F. S. Xiao, Adv. Mater. 2019, 31, 1901905.
- 24Y. Zhang, J. X. Liu, K. Qian, A. Jia, D. Li, L. Shi, J. Hu, J. Zhu, W. Huang, Angew. Chem. Int. Ed. 2021, 60, 12074–12081.
- 25S. Liu, W. Xu, Y. Niu, B. Zhang, L. Zheng, W. Liu, L. Li, J. Wang, Nat. Commun. 2019, 10, 5790.
- 26C. J. Pan, M. C. Tsai, W. N. Su, J. Rick, N. G. Akalework, A. K. Agegnehu, S. Y. Cheng, B. J. Hwang, J. Taiwan Inst. Chem. Eng. 2017, 74, 154–186.
- 27W. T. Figueiredo, R. Prakash, C. G. Vieira, D. S. Lima, V. E. Carvalho, E. A. Soares, S. Buchner, H. Raschke, O. W. Perez-Lopez, D. L. Baptista, R. Hergenröder, M. Segala, F. Bernardi, Appl. Surf. Sci. 2022, 574, 151647.
- 28J. C. Matsubu, S. Zhang, L. DeRita, N. S. Marinkovic, J. G. Chen, G. W. Graham, X. Pan, P. Christopher, Nat. Chem. 2017, 9, 120–127.
- 29Z. Luo, G. Zhao, H. Pan, W. Sun, Adv. Energy Mater. 2022, 12, 2201395.
- 30F. Polo-Garzon, T. F. Blum, Z. Bao, K. Wang, V. Fung, Z. Huang, E. E. Bickel, D. E. Jiang, M. Chi, Z. Wu, ACS Catal. 2021, 11, 1938–1945.
- 31Z. Dong, W. Liu, L. Zhang, S. Wang, L. Luo, ACS Appl. Mater. Interfaces 2021, 13, 41707–41714.
- 32G. Zhang, J. Zhao, T. Yang, Q. Zhang, L. Zhang, Appl. Catal. A 2021, 616, 118072.
- 33Z. Cheng, W. Zhou, G. Lan, X. Sun, X. Wang, C. Jiang, Y. Li, J. Energy Chem. 2021, 63, 550–557.
- 34K. Kähler, M. C. Holz, M. Rohe, A. C. Van Veen, M. Muhler, J. Catal. 2013, 299, 162–170.
- 35F. Polo-Garzon, T. F. Blum, V. Fung, Z. Bao, H. Chen, Z. Huang, S. M. Mahurin, S. Dai, M. Chi, Z. Wu, ACS Catal. 2020, 10, 8515–8523.
- 36S. J. Pratt, D. K. Escott, D. A. King, J. Chem. Phys. 2003, 119, 10867–10878.
- 37S. Jin, D. Li, Z. Wang, Y. Wang, L. Sun, M. Zhu, Catal. Sci. Technol. 2022, 12, 7003-7009.
- 38Z. Zhang, S. S. Wang, R. Song, T. Cao, L. Luo, X. Chen, Y. Gao, J. Lu, W. X. Li, W. Huang, Nat. Commun. 2017, 8, 488.
- 39T. Reichenbach, M. Walter, M. Moseler, B. Hammer, A. Bruix, J. Phys. Chem. C 2019, 123, 30903–30916.
- 40H. R. Sadeghi, V. E. Henrich, J. Catal. 1988, 109, 1.
- 41X. Wang, A. Beck, J. A. van Bokhoven, D. Palagin, J. Mater. Chem. A 2021, 9, 4044–4054.
- 42A. M. Lucero Manzano, J. D. Fuhr, E. D. Cantero, M. Famá, E. A. Sánchez, V. E. Esaulov, O. Grizzi, Appl. Surf. Sci. 2022, 572, 151271.
- 43M. Iachella, J. Cure, M. Djafari Rouhani, Y. Chabal, C. Rossi, A. Estève, J. Phys. Chem. C 2018, 122, 21861–21873.
- 44R. Schaub, P. Thostrup, N. Lopez, E. Lægsgaard, I. Stensgaard, J. K. Nørskov, F. Besenbacher, Phys. Rev. Lett. 2001, 87, 266104–1–266104–4.
- 45J. Pritchard, T. Catterick, R. K. Gupta, Surf. Sci. 1975, 53, 1.
- 46R. Ben David, A. Ben Yaacov, A. R. Head, B. Eren, ACS Catal. 2022, 12, 7709–7718.
- 47S. D. Jones, L. M. Neal, H. E. Hagelin-Weaver, Appl. Catal. B 2008, 84, 631–642.
- 48A. Guntida, S. Wannakao, P. Praserthdam, J. Panpranot, Catal. Sci. Technol. 2020, 10, 5100–5112.
- 49M. Muir, D. L. Molina, A. Islam, M. K. Abdel-Rahman, M. Trenary, Phys. Chem. Chem. Phys. 2020, 22, 25011–25020.
- 50F. Raimondi, K. Geissler, J. Wambach, A. Wokaun, Appl. Surf. Sci. 2002, 189, 59–71.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.