Supercritical CO2-Induced Amorphization in 2D Materials: Mechanism and Applications
Dr. Tianpei Ge
Henan Institute of Advanced Technolog, Zhengzhou University, Zhengzhou, 450052 P. R. China
Search for more papers by this authorWenui Cui
College of Materials Science & Engineering, Zhengzhou University, Zhengzhou, 450052 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Qun Xu
Henan Institute of Advanced Technolog, Zhengzhou University, Zhengzhou, 450052 P. R. China
Search for more papers by this authorDr. Tianpei Ge
Henan Institute of Advanced Technolog, Zhengzhou University, Zhengzhou, 450052 P. R. China
Search for more papers by this authorWenui Cui
College of Materials Science & Engineering, Zhengzhou University, Zhengzhou, 450052 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Qun Xu
Henan Institute of Advanced Technolog, Zhengzhou University, Zhengzhou, 450052 P. R. China
Search for more papers by this authorAbstract
Supercritical carbon dioxide (SC CO2)-assisted chemical and material processing has shown great success in the fabrication of 2D amorphous materials, while the amorphization mechanism in SC CO2 is quite complicated to be understand. In this review, we introduce different kinds of 2D amorphous materials prepared with SC CO2 and discuss the possible amorphization mechanism and how they affect the structures and properties of 2D materials. Their applications are further presented and discussed. In addition, the prospective of future development of SC CO2-assisted fabrication of 2D amorphous materials is also involved. The investigation of SC CO2 induced amorphization not only provides theoretic understanding of amorphization process, but also directs to the preparation and application of 2D amorphous materials with specific structure and property, suggesting the promising future of SC CO2-assisted process in material design and engineering.
Conflict of interest
The authors declare no conflict of interest.
References
- 1
- 1aS. Hong, C. S. Lee, M. H. Lee, Y. Lee, K. Y. Ma, G. Kim, S. I. Yoon, K. Ihm, K. J. Kim, T. J. Shin, S. W. Kim, E. C. Jeon, H. Jeon, J. Y. Kim, H. I. Lee, Z. Lee, A. Antidormi, S. Roche, M. Chhowalla, H. J. Shin, H. S. Shin, Nature 2020, 582, 511–514;
- 1bG. Wu, X. Zheng, P. Cui, H. Jiang, X. Wang, Y. Qu, W. Chen, Y. Lin, H. Li, X. Han, Y. Hu, P. Liu, Q. Zhang, J. Ge, Y. Yao, R. Sun, Y. Wu, L. Gu, X. Hong, Y. Li, Nat. Commun. 2019, 10, 4855;
- 1cS. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, N. S. Lewis, Science 2014, 344, 1005–1009.
- 2
- 2aX. Zou, Y. Liu, G.-D. Li, Y. Wu, D.-P. Liu, W. Li, H.-W. Li, D. Wang, Y. Zhang, X. Zou, Adv. Mater. 2017, 29, 1700404;
- 2bA. Indra, P. W. Menezes, N. R. Sahraie, A. Bergmann, C. Das, M. Tallarida, D. Schmeisser, P. Strasser, M. Driess, J. Am. Chem. Soc. 2014, 136, 17530–17536;
- 2cA. Llordés, Y. Wang, A. Fernandez-Martinez, P. Xiao, T. Lee, A. Poulain, O. Zandi, C. A. Saez Cabezas, G. Henkelman, D. J. Milliron, Nat. Mater. 2016, 15, 1267–1273.
- 3
- 3aB. R. Goldsmith, B. Peters, J. K. Johnson, B. C. Gates, S. L. Scott, ACS Catal. 2017, 7, 7543–7557;
- 3bZ. Yang, J. Hao, S. P. Lau, J. Appl. Phys. 2020, 127, 220901.
- 4
- 4aA. L. Greer, Science 1995, 267, 1947–1953;
- 4bH. Zhao, Y. Yue, Y. Zhang, L. Li, L. Guo, Adv. Mater. 2016, 28, 2037.
- 5Y. H. Liu, G. Wang, R. J. Wang, D. Q. Zhao, M. X. Pan, W. H. Wang, Science 2007, 315, 1385–1388.
- 6P. D. Tran, T. V. Tran, M. Orio, S. Torelli, Q. D. Truong, K. Nayuki, Y. Sasaki, S. Y. Chiam, R. Yi, I. Honma, J. Barber, V. Artero, Nat. Mater. 2016, 15, 640–646.
- 7
- 7aJ. Liu, Y. Ji, J. Nai, X. Niu, Y. Luo, L. Guo, S. Yang, Energy Environ. Sci. 2018, 11, 1736–1741;
- 7bC. Lv, C. Yan, G. Chen, Y. Ding, J. Sun, Y. Zhou, G. Yu, Angew. Chem. Int. Ed. 2018, 57, 6073–6076; Angew. Chem. 2018, 130, 6181–6184;
- 7cT. Liu, Y. Feng, Y. Duan, S. Cui, L. Lin, J. Hu, H. Guo, Z. Zhuo, J. Zheng, Y. Lin, W. Yang, K. Amine, F. Pan, Nano Energy 2015, 18, 187–195;
- 7dX. Wang, W. Shi, S. Wang, H. Zhao, J. Lin, Z. Yang, M. Chen, L. Guo, J. Am. Chem. Soc. 2019, 141, 5856–5862;
- 7eY. Xi, B. Dong, Y. Dong, N. Mao, L. Ding, L. Shi, R. Gao, W. Liu, G. Su, L. Cao, Chem. Mater. 2016, 28, 1355–1362.
- 8
- 8aL. Yang, Z. Guo, J. Huang, Y. Xi, R. Gao, G. Su, W. Wang, L. Cao, B. Dong, Adv. Mater. 2017, 29, 1704574;
- 8bB. Verberck, Nat. Phys. 2017, 13, 205–205.
- 9H. Zhao, X. Chen, G. Wang, Y. Qiu, L. Guo, 2D Mater. 2019, 6, 032002.
- 10
- 10aJ. S. Tse, D. D. Klug, J. A. Ripmeester, S. Desgreniers, K. Lagarec, Nature 1994, 369, 724–727;
- 10bT. Linker, S. Tiwari, S. Fukushima, R. K. Kalia, A. Krishnamoorthy, A. Nakano, K. I. Nomura, K. Shimamura, F. Shimojo, P. Vashishta, J. Phys. Chem. Lett. 2020, 11, 9605–9612;
- 10cT. D. Bennett, D. A. Keen, J. C. Tan, E. R. Barney, A. L. Goodwin, A. K. Cheetham, Angew. Chem. Int. Ed. 2011, 50, 3067–3071; Angew. Chem. 2011, 123, 3123–3127;
- 10dL. Meng, S. Wang, F. Cao, W. Tian, R. Long, L. Li, Angew. Chem. Int. Ed. 2019, 58, 6761–6765; Angew. Chem. 2019, 131, 6833–6837;
- 10eJ. Zhou, R. S. Averback, P. Bellon, Acta Mater. 2014, 73, 116–127;
- 10fY. Jiang, Y. Song, Z. Pan, Y. Meng, L. Jiang, Z. Wu, P. Yang, Q. Gu, D. Sun, L. Hu, ACS Nano 2018, 12, 5011–5020;
- 10gD. R. Clarke, C. M. Kroll, P. D. Kirchner, R. F. Cook, B. J. Hockey, Phys. Rev. Lett. 1988, 60, 2156–2159;
- 10hG. Chen, Y. Zhu, H. M. Chen, Z. Hu, S. F. Hung, N. Ma, J. Dai, H. J. Lin, C. T. Chen, W. Zhou, Z. Shao, Adv. Mater. 2019, 31, 1900883.
- 11Z. Sun, Q. Fan, M. Zhang, S. Liu, H. Tao, J. Texter, Adv. Sci. 2019, 6, 1901084.
- 12W. Liu, Q. Xu, W. Cui, C. Zhu, Y. Qi, Angew. Chem. Int. Ed. 2017, 56, 1600–1604; Angew. Chem. 2017, 129, 1622–1626.
- 13H. Li, Q. Xu, X. Wang, W. Liu, Small 2018, 14, 1801523.
- 14X. Wang, P. Yan, Q. Xu, H. Li, C. Guo, C. Liu, Chem. Commun. 2019, 55, 9777–9780.
- 15T. Ge, Z. Wei, X. Zheng, Q. Xu, J. Phys. Chem. Lett. 2021, 12, 1554–1559.
- 16T. Ge, Z. Wei, X. Zheng, P. Yan, Q. Xu, J. Phys. Chem. Lett. 2021, 12, 6543–6550.
- 17
- 17aM. Avrami, J. Chem. Phys. 1939, 7, 1103–1112;
- 17bW. A. Johnson, K. F. Mehl, Trans. Am. Inst. Min. Metall. Eng. 1939, 135, 416–442;
- 17cM. Avrami, J. Chem. Phys. 1940, 8, 212–224.
- 18N. S. Prasad, K. B. R. Varma, J. Am. Ceram. Soc. 2005, 88, 357–361.
- 19
- 19aV. Agarwal, H. Metiu, J. Phys. Chem. C 2016, 120, 19252–19264;
- 19bV. Agarwal, H. Metiu, J. Phys. Chem. C 2016, 120, 2320–2323.
- 20Y. Ren, C. Li, Q. Xu, J. Yan, Y. Li, P. Yuan, H. Xia, C. Niu, X. Yang, Y. Jia, Appl. Catal. B 2019, 245, 648–655.
- 21Y. Zhou, Q. Xu, T. Ge, X. Zheng, L. Zhang, P. Yan, Angew. Chem. Int. Ed. 2020, 59, 3322–3328; Angew. Chem. 2020, 132, 3348–3354.
- 22L. Du, Q. Tian, X. Zheng, W. Guo, W. Liu, Y. Zhou, F. Shi, Q. Xu, Energy Environ. Mater. 2022, 5, 912–917.
- 23Z. Guo, H. Yang, Q. Tian, W. Ma, Q. Xu, B. Han, ChemNanoMat 2022, 8, e202200269.
- 24
- 24aP. Yan, Y. Zhou, B. Zhang, Q. Xu, ChemPhysChem 2022, 23, e202200342;
- 24bP. Yan, Y. Han, Q. Xu, ChemNanoMat 2022, 8, e202200216.
- 25W. Cui, T. Ge, Q. Xu, J. Phys. Chem. C 2022, 126, 19311–19318.
- 26K. Nishikawa, I. Tanaka, Chem. Phys. Lett. 1995, 244, 149–152.
- 27
- 27aG. K. Serhatkulu, C. Dilek, E. Gulari, J. Supercrit. Fluids 2006, 39, 264–270;
- 27bD. Rangappa, K. Sone, M. Wang, U. K. Gautam, D. Golberg, H. Itoh, M. Ichihara, I. Honma, Chemistry 2010, 16, 6488–6494.
- 28
- 28aY. Gao, W. Shi, W. Wang, Y. Wang, Y. Zhao, Z. Lei, R. Miao, Ind. Eng. Chem. Res. 2014, 53, 2839–2845;
- 28bY. Wang, Z. Chen, Z. Wu, Y. Li, W. Yang, Y. Li, Langmuir 2018, 34, 7797–7804.
- 29B. Wu, X. Yang, J. Colloid Interface Sci. 2011, 361, 1–8.
- 30Y. Zhou, P. Yan, S. Zhang, C. Ma, T. Ge, X. Zheng, L. Zhang, J. Jiang, Y. Shen, J. Chen, Q. Xu, Nano Today 2021, 40, 101272.
- 31C. Zhao, H. Zhang, W. Si, H. Wu, Nat. Commun. 2016, 7, 12543.
- 32Y. Zhang, Z. Yi, J. Wang, L. Wei, L. Kong, L. Wang, Mater. Lett. 2018, 233, 290–293.
- 33M. Xie, B. Zhang, Z. Jin, P. Li, G. Yu, ACS Nano 2022, 16, 13715–13727.
- 34Z. Huang, H. Gao, Z. Yang, W. Jiang, Q. Wang, S. Wang, J. Ju, Y.-U. Kwon, Y. Zhao, Mater. Des. 2019, 180, 107973.
- 35Z. G. Yang, Z. G. Wu, W. B. Hua, Y. Xiao, G. K. Wang, Y. X. Liu, C. J. Wu, Y. C. Li, B. H. Zhong, W. Xiang, Y. J. Zhong, X. D. Guo, Adv. Sci. 2020, 7, 1903279.
- 36B. Özdogru, Y. Cha, B. Gwalani, V. Murugesan, M.-K. Song, Ö. Ö. Çapraz, Nano Lett. 2021, 21, 7579–7586.
- 37
- 37aS. Xu, Q. Xu, N. Wang, Z. Chen, Q. Tian, H. Yang, K. Wang, Chem. Mater. 2015, 27, 3262–3272;
- 37bP. Zhou, Q. Xu, H. Li, Y. Wang, B. Yan, Y. Zhou, J. Chen, J. Zhang, K. Wang, Angew. Chem. Int. Ed. 2015, 54, 15226–15230; Angew. Chem. 2015, 127, 15441–15445;
- 37cY. Qi, Q. Xu, Y. Wang, B. Yan, Y. Ren, Z. Chen, ACS Nano 2016, 10, 2903–2909.
- 38R. J. Hemley, A. P. Jephcoat, H. K. Mao, L. C. Ming, M. H. Manghnani, Nature 1988, 334, 52–54.
- 39O. Mishima, L. D. Calvert, E. Whalley, Nature 1984, 310, 393–395.
- 40
- 40aR. N. Widmer, G. I. Lampronti, S. Anzellini, R. Gaillac, S. Farsang, C. Zhou, A. M. Belenguer, C. W. Wilson, H. Palmer, A. K. Kleppe, M. T. Wharmby, X. Yu, S. M. Cohen, S. G. Telfer, S. A. T. Redfern, F. X. Coudert, S. G. MacLeod, T. D. Bennett, Nat. Mater. 2019, 18, 370–376;
- 40bS. K. Deb, M. Wilding, M. Somayazulu, P. F. McMillan, Nature 2001, 414, 528–530;
- 40cJ. Han, S. Xu, J. Sun, L. Fang, H. Zhu, RSC Adv. 2017, 7, 1357–1362.
- 41
- 41aL. Wang, W. Yang, Y. Ding, Y. Ren, S. Xiao, B. Liu, S. V. Sinogeikin, Y. Meng, D. J. Gosztola, G. Shen, R. J. Hemley, W. L. Mao, H.-k. Mao, Phys. Rev. Lett. 2010, 105, 095701;
- 41bX. Lü, Q. Hu, W. Yang, L. Bai, H. Sheng, L. Wang, F. Huang, J. Wen, D. J. Miller, Y. Zhao, J. Am. Chem. Soc. 2013, 135, 13947–13953;
- 41cT. Du, S. S. Sørensen, T. To, M. M. Smedskjaer, J. Appl. Phys. 2022, 131, 170901;
- 41dZ. Yu, W. Xia, K. Xu, M. Xu, H. Wang, X. Wang, N. Yu, Z. Zou, J. Zhao, L. Wang, X. Miao, Y. Guo, J. Phys. Chem. C 2019, 123, 13885–13891;
- 41eS. M. Peiris, J. S. Sweeney, A. J. Campbell, D. L. Heinz, J. Chem. Phys. 1996, 104, 11–16.
- 42Y. Shu, Y. Kono, I. Ohira, Q. Li, R. Hrubiak, C. Park, C. Kenney-Benson, Y. Wang, G. Shen, J. Phys. Chem. Lett. 2020, 11, 374–379.
- 43
- 43aT. Yamanaka, T. Nagai, T. Tsuchiya, Z. Kristallogr. - Cryst. Mater. 1997, 212, 401–410;
- 43bC. A. Tulk, J. J. Molaison, A. R. Makhluf, C. E. Manning, D. D. Klug, Nature 2019, 569, 542–545.
- 44
- 44aO. Mishima, Nature 1996, 384, 546–549;
- 44bJ. S. Tse, D. D. Klug, C. A. Tulk, I. Swainson, E. C. Svensson, C. K. Loong, V. Shpakov, V. R. Belosludov, R. V. Belosludov, Y. Kawazoe, Nature 1999, 400, 647–649.
- 45
- 45aV. Samae, P. Cordier, S. Demouchy, C. Bollinger, J. Gasc, S. Koizumi, A. Mussi, D. Schryvers, H. Idrissi, Nature 2021, 591, 82–86;
- 45bY. He, L. Zhong, F. Fan, C. Wang, T. Zhu, S. X. Mao, Nat. Nanotechnol. 2016, 11, 866–871;
- 45cJ. A. Greathouse, P. F. Weck, M. E. Gordon, E. Kim, C. R. Bryan, J. Phys. Condens. Matter 2020, 32, 085401;
- 45dS. Zhao, Z. Li, C. Zhu, W. Yang, Z. Zhang, D. E. J. Armstrong, P. S. Grant, R. O. Ritchie, M. A. Meyers, Sci. Adv. 2021, 7, eabb3108;
- 45eY. Zeng, L. Alzate-Vargas, C. Li, R. Graves, J. Brum, A. Strachan, M. Koslowski, Model. Simul. Mater. Sci. Eng. 2019, 27, 074005.
- 46
- 46aI. A. Ovid′ko, J. Phys. D 1994, 27, 999–1007;
- 46bP. S. Branício, J.-P. Rino, Phys. Rev. B 2000, 62, 16950–16955;
- 46cS. Aryal, P. Rulis, W. Y. Ching, Phys. Rev. B 2011, 84, 184112;
- 46dM. Misawa, E. Ryuo, K. Yoshida, R. K. Kalia, A. Nakano, N. Nishiyama, F. Shimojo, P. Vashishta, F. Wakai, Sci. Adv. 2017, 3, e1602339;
- 46eA. S. Koh, H. P. Lee, Nano Lett. 2006, 6, 2260–2267;
- 46fS. Zhao, E. N. Hahn, B. Kad, B. A. Remington, C. E. Wehrenberg, E. M. Bringa, M. A. Meyers, Acta Mater. 2016, 103, 519–533;
- 46gS. Zhao, R. Flanagan, E. N. Hahn, B. Kad, B. A. Remington, C. E. Wehrenberg, R. Cauble, K. More, M. A. Meyers, Acta Mater. 2018, 158, 206–213;
- 46hP. Walsh, R. K. Kalia, A. Nakano, P. Vashishta, S. Saini, Appl. Phys. Lett. 2000, 77, 4332–4334;
- 46iA. W. Weeber, H. Bakker, Physica B+C 1988, 153, 93–135;
- 46jC. Jiang, M. J. Zheng, D. Morgan, I. Szlufarska, Phys. Rev. Lett. 2013, 111, 155501;
- 46kA. U. Ortiz, A. Boutin, A. H. Fuchs, F. X. Coudert, J. Phys. Chem. Lett. 2013, 4, 1861–1865.
- 47K. M. Reddy, D. Guo, S. Song, C. Cheng, J. Han, X. Wang, Q. An, M. Chen, Sci. Adv. 2021, 7, eabc6714.
- 48J. Li, Q. An, J. Am. Ceram. Soc. 2022, 105, 6826–6838.
- 49P. Hua, B. Wang, C. Yu, Y. Han, Q. Sun, Acta Mater. 2022, 241, 118358.
- 50S. C. Tucker, Chem. Rev. 1999, 99, 391–418.
- 51Y. Gai, W. Wang, D. Xiao, Y. Zhao, Ultrason. Sonochem. 2018, 41, 181–188.
- 52H. J. Fecht, Nature 1992, 356, 133–135.
- 53
- 53aT. Motooka, Thin Solid Films 1996, 272, 235–243;
- 53bS. Takeda, J. Yamasaki, Phys. Rev. Lett. 1999, 83, 320–323;
- 53cS. W. Nam, H. S. Chung, Y. C. Lo, L. Qi, J. Li, Y. Lu, A. T. Johnson, Y. Jung, P. Nukala, R. Agarwal, Science 2012, 336, 1561–1566;
- 53dS. Conrad, P. Kumar, F. Xue, L. Ren, S. Henning, C. Xiao, K. A. Mkhoyan, M. Tsapatsis, Angew. Chem. Int. Ed. 2018, 57, 13592–13597; Angew. Chem. 2018, 130, 13780–13785;
- 53eS. C. Tiwari, R. K. Kalia, A. Nakano, F. Shimojo, P. Vashishta, P. S. Branicio, J. Phys. Chem. Lett. 2020, 11, 10242–10249.
- 54Z. J. Lin, M. J. Zhuo, Z. Q. Sun, P. Veyssière, Y. C. Zhou, Acta Mater. 2009, 57, 2851–2857.
- 55X. Huang, S. Tang, X. Mu, Y. Dai, G. Chen, Z. Zhou, F. Ruan, Z. Yang, N. Zheng, Nat. Nanotechnol. 2011, 6, 28–32.
- 56
- 56aC. Cui, L. Gan, M. Neumann, M. Heggen, B. R. Cuenya, P. Strasser, J. Am. Chem. Soc. 2014, 136, 4813–4816;
- 56bL. Dai, S. Mo, Q. Qin, X. Zhao, N. Zheng, Small 2016, 12, 1572–1577;
- 56cL. Dai, Y. Zhao, Q. Qin, X. Zhao, C. Xu, N. Zheng, ChemNanoMat 2016, 2, 776–780.
- 57
- 57aK. K. Qian, R. H. Bogner, J. Pharm. Sci. 2012, 101, 444–463;
- 57bS. Janssens, G. Van den Mooter, J. Pharm. Pharmacol. 2010, 61, 1571–1586;
- 57cP. J. Marsac, T. Li, L. S. Taylor, Pharm. Res. 2009, 26, 139–151.
- 58R. Laitinen, K. Lobmann, C. J. Strachan, H. Grohganz, T. Rades, Int. J. Pharm. 2013, 453, 65–79.
- 59
- 59aP. Gurikov, I. Smirnova, J. Supercrit. Fluids 2018, 132, 105–125;
- 59bR. T. Y. Lim, W. K. Ng, R. B. H. Tan, J. Supercrit. Fluids 2010, 53, 179–184.
- 60
- 60aY. Yang, J. Zhou, F. Zhu, Y. Yuan, D. J. Chang, D. S. Kim, M. Pham, A. Rana, X. Tian, Y. Yao, S. J. Osher, A. K. Schmid, L. Hu, P. Ercius, J. Miao, Nature 2021, 592, 60–64;
- 60bH. Tanaka, H. Tong, R. Shi, J. Russo, Nat. Rev. Phys. 2019, 1, 333–348.
- 61
- 61aJ. Itie, A. Polian, G. Calas, J. Petiau, A. Fontaine, H. Tolentino, Phys. Rev. Lett. 1989, 63, 398–401;
- 61bC. Meade, R. J. Hemley, H. K. Mao, Phys. Rev. Lett. 1992, 69, 1387–1390;
- 61cJ. S. Tse, D. D. Klug, Phys. Rev. Lett. 1991, 67, 3559–3562.
- 62G. Wan, J. W. Freeland, J. Kloppenburg, G. Petretto, J. N. Nelson, D.-Y. Kuo, C.-J. Sun, J. Wen, J. T. Diulus, G. S. Herman, Y. Dong, R. Kou, J. Sun, S. Chen, K. M. Shen, D. G. Schlom, G.-M. Rignanese, G. Hautier, D. D. Fong, Z. Feng, H. Zhou, J. Suntivich, Sci. Adv. 2021, 7, eabc7323.
- 63E. Apra, F. Baletto, R. Ferrando, A. Fortunelli, Phys. Rev. Lett. 2004, 93, 065502.
- 64
- 64aM. Łabanowska, Phys. Chem. Chem. Phys. 1999, 1, 5385–5392;
- 64bM. Dieterle, G. Weinberg, G. Mestl, Phys. Chem. Chem. Phys. 2002, 4, 812–821.
- 65Z. Li, B. Li, M. Yu, C. Yu, P. Shen, Int. J. Hydrogen Energy 2022, 47, 26956–26977.
- 66
- 66aY. Zhou, W. Hao, X. Zhao, J. Zhou, H. Yu, B. Lin, Z. Liu, S. J. Pennycook, S. Li, H. J. Fan, Adv. Mater. 2022, 34, 2100537;
- 66bW. Tian, X. Zhang, Z. Wang, L. Cui, M. Li, Y. Xu, X. Li, L. Wang, H. Wang, Chem. Eng. J. 2022, 440, 135848;
- 66cX. Hou, Z. Han, X. Xu, D. Sarker, J. Zhou, M. Wu, Z. Liu, M. Huang, H. Jiang, Chem. Eng. J. 2021, 418, 129330;
- 66dJ. Wang, L. Han, B. Huang, Q. Shao, H. L. Xin, X. Huang, Nat. Commun. 2019, 10, 5692;
- 66eZ. Xu, J. Liang, Y. Wang, K. Dong, X. Shi, Q. Liu, Y. Luo, T. Li, Y. Jia, A. M. Asiri, Z. Feng, Y. Wang, D. Ma, X. Sun, ACS Appl. Mater. Interfaces 2021, 13, 33182–33187;
- 66fT. Stolar, A. Prasnikar, V. Martinez, B. Karadeniz, A. Bjelic, G. Mali, T. Friscic, B. Likozar, K. Uzarevic, ACS Appl. Mater. Interfaces 2021, 13, 3070–3077;
- 66gJ. Shen, L. Wang, X. He, S. Wang, J. Chen, J. Wang, H. Jin, ChemSusChem 2022, 15, e202201350;
- 66hK. Chu, W. Gu, Q. Li, Y. Liu, Y. Tian, W. Liu, J. Energy Chem. 2021, 53, 82–89;
- 66iW. Wang, X. Shi, T. He, Z. Zhang, X. Yang, Y. J. Guo, B. Chong, W. M. Zhang, M. Jin, Nano Lett. 2022, 22, 7028–7033;
- 66jQ. T. Phan, K. C. Poon, H. Sato, Int. J. Hydrogen Energy 2021, 46, 14190–14211.
- 67S. Linic, U. Aslam, C. Boerigter, M. Morabito, Nat. Mater. 2015, 14, 567–576.
- 68G. Chen, G. I. N. Waterhouse, R. Shi, J. Zhao, Z. Li, L. Z. Wu, C. H. Tung, T. Zhang, Angew. Chem. Int. Ed. 2019, 58, 17528–17551; Angew. Chem. 2019, 131, 17690–17715.
- 69Y. Li, P. Yan, C. Guo, Q. Xu, Chem. Commun. 2020, 56, 7805–7808.
- 70Z. Wei, T. Ge, W. Liu, X. Zheng, Q. Xu, Mater. Lett. 2021, 304, 130601.
- 71W. Liu, Q. Tian, J. Yang, Y. Zhou, H. Chang, W. Cui, Q. Xu, Chem. Asian J. 2021, 16, 1253–1257.
- 72
- 72aZ. Lin, C. Du, B. Yan, C. Wang, G. Yang, Nat. Commun. 2018, 9, 4036;
- 72bC. Zhang, Y. Xu, C. Lv, L. Bai, J. Liao, Y. Zhai, H. Zhang, G. Chen, Appl. Catal. B 2020, 264, 118416;
- 72cJ. He, P. Lyu, B. Jiang, S. Chang, H. Du, J. Zhu, H. Li, Appl. Catal. B 2021, 298, 120603;
- 72dB. X. Zhou, S. S. Ding, K. X. Yang, J. Zhang, G. F. Huang, A. Pan, W. Hu, K. Li, W. Q. Huang, Adv. Funct. Mater. 2021, 31, 2009230.
- 73L. Du, B. Gao, Q. Tian, X. Zheng, W. Liu, H. Chang, P. Yan, Q. Xu, Solar RRL 2021, 5, 2100673.
- 74Z. Lin, C. Du, B. Yan, G. Yang, J. Catal. 2019, 372, 299–310.
- 75X.-R. Wang, K.-X. Yang, S.-S. Ding, Y.-Y. Li, B.-X. Zhou, G.-F. Huang, W. Hu, W.-Q. Huang, Phys. Status Solidi RRL 2021, 15, 2100254.
- 76W. Liu, C. Li, Q. Xu, P. Yan, C. Niu, Y. Shen, P. Yuan, Y. Jia, ChemCatChem 2019, 11, 5412–5416.
- 77Y. Luo, Q. Li, Y. Tian, Y. Liu, K. Chu, J. Mater. Chem. A 2022, 10, 1742–1749.
- 78S. Liu, S. Geng, L. Li, Y. Zhang, G. Ren, B. Huang, Z. Hu, J. F. Lee, Y. H. Lai, Y. H. Chu, Y. Xu, Q. Shao, X. Huang, Nat. Commun. 2022, 13, 1187.
- 79
- 79aC. Long, X. Li, J. Guo, Y. Shi, S. Liu, Z. Tang, Small Methods 2018, 1800369;
- 79bJ. Wang, C. Cheng, B. Huang, J. Cao, L. Li, Q. Shao, L. Zhang, X. Huang, Nano Lett. 2021, 21, 980–987;
- 79cZ. Wang, Y. Zhou, C. Xia, W. Guo, B. You, B. Y. Xia, Angew. Chem. Int. Ed. 2021, 60, 19107–19112; Angew. Chem. 2021, 133, 19255–19260.
- 80L. Xiao, G. Li, Z. Yang, K. Chen, R. Zhou, H. Liao, Q. Xu, J. Xu, Adv. Funct. Mater. 2021, 31, 2100982.
- 81W. Wang, T. He, X. Yang, Y. Liu, C. Wang, J. Li, A. Xiao, K. Zhang, X. Shi, M. Jin, Nano Lett. 2021, 21, 3458–3464.
- 82K. K. Chattopadhyay, D. Banerjee, N. S. Das, D. Sarkar, Carbon 2014, 72, 4–14.
- 83Z. Yang, J. Hao, S. Yuan, S. Lin, H. M. Yau, J. Dai, S. P. Lau, Adv. Mater. 2015, 27, 3748–3754.
- 84N. R. Glavin, C. Muratore, M. L. Jespersen, J. Hu, P. T. Hagerty, A. M. Hilton, A. T. Blake, C. A. Grabowski, M. F. Durstock, M. E. McConney, D. M. Hilgefort, T. S. Fisher, A. A. Voevodin, Adv. Funct. Mater. 2016, 26, 2640–2647.
- 85Y.-N. Li, R.-Z. Wang, C.-H. Su, Z. Shen, Y.-F. Zhang, H. Yan, J. Alloys Compd. 2017, 705, 734–739.
- 86W. J. Joo, J. H. Lee, Y. Jang, S. G. Kang, Y. N. Kwon, J. Chung, S. Lee, C. Kim, T. H. Kim, C. W. Yang, U. J. Kim, B. L. Choi, D. Whang, S. W. Hwang, Sci. Adv. 2017, 3, e1601821.
- 87Y. R. Jeon, Y. Abbas, A. S. Sokolov, S. Kim, B. Ku, C. Choi, ACS Appl. Mater. Interfaces 2019, 11, 23329–23336.
- 88M. Z. Bellus, Z. Yang, P. Zereshki, J. Hao, S. P. Lau, H. Zhao, Nanoscale Horiz. 2019, 4, 236–242.
- 89B. Sirota, N. Glavin, S. Krylyuk, A. V. Davydov, A. A. Voevodin, Sci. Rep. 2018, 8, 8668.
- 90M. M. Bhunia, K. Panigrahi, S. Das, K. K. Chattopadhyay, P. Chattopadhyay, Carbon 2018, 139, 1010–1019.
- 91
- 91aX. D. Xiang, X. Sun, G. Briceno, Y. Lou, K. A. Wang, H. Chang, W. G. Wallace-Freedman, S. W. Chen, P. G. Schultz, Science 1995, 268, 1738–1740;
- 91bM. L. Green, C. L. Choi, J. R. Hattrick-Simpers, A. M. Joshi, I. Takeuchi, S. C. Barron, E. Campo, T. Chiang, S. Empedocles, J. M. Gregoire, A. G. Kusne, J. Martin, A. Mehta, K. Persson, Z. Trautt, J. Van Duren, A. Zakutayev, Appl. Phys. Rev. 2017, 4, 011105;
- 91cR. Potyrailo, K. Rajan, K. Stoewe, I. Takeuchi, B. Chisholm, H. Lam, ACS Comb. Sci. 2011, 13, 579–633.
- 92
- 92aM. X. Li, S. F. Zhao, Z. Lu, A. Hirata, P. Wen, H. Y. Bai, M. Chen, J. Schroers, Y. Liu, W. H. Wang, Nature 2019, 569, 99–103;
- 92bF. Ren, L. Ward, T. Williams, K. J. Laws, C. Wolverton, J. Hattrick-Simpers, A. Mehta, Sci. Adv. 2018, 4, eaaq1566.
- 93N. Mounet, M. Gibertini, P. Schwaller, D. Campi, A. Merkys, A. Marrazzo, T. Sohier, I. E. Castelli, A. Cepellotti, G. Pizzi, N. Marzari, Nat. Nanotechnol. 2018, 13, 246–252.
- 94Y. He, L. Liu, C. Zhu, S. Guo, P. Golani, B. Koo, P. Tang, Z. Zhao, M. Xu, C. Zhu, P. Yu, X. Zhou, C. Gao, X. Wang, Z. Shi, L. Zheng, J. Yang, B. Shin, J. Arbiol, H. Duan, Y. Du, M. Heggen, R. E. Dunin-Borkowski, W. Guo, Q. J. Wang, Z. Zhang, Z. Liu, Nat. Catal. 2022, 5, 212–221.
- 95
- 95aD. Azuma, N. Ito, M. Ohta, J. Magn. Magn. Mater. 2020, 501, 166373;
- 95bW. X. Zhou, Y. Cheng, K. Q. Chen, G. Xie, T. Wang, G. Zhang, Adv. Funct. Mater. 2020, 30, 1903829;
- 95cC. Tang, G. Sun, Y. Liu, Int. J. Hydrogen Energy 2022, 47, 9627–9634;
- 95dJ. C. Qiao, Q. Wang, J. M. Pelletier, H. Kato, R. Casalini, D. Crespo, E. Pineda, Y. Yao, Y. Yang, Prog. Mater. Sci. 2019, 104, 250–329.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.