Umpolung Asymmetric 1,5-Conjugate Addition via Palladium Hydride Catalysis
Yu-Chao Wang
CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032 China
Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000 China
These authors contributed equally to this work.
Search for more papers by this authorZhao-Xin Xiao
CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032 China
These authors contributed equally to this work.
Search for more papers by this authorMiao Wang
CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032 China
These authors contributed equally to this work.
Search for more papers by this authorShao-Qian Yang
CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032 China
Search for more papers by this authorProf. Jin-Biao Liu
Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000 China
Search for more papers by this authorCorresponding Author
Prof. Zhi-Tao He
CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032 China
School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024 China
Search for more papers by this authorYu-Chao Wang
CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032 China
Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000 China
These authors contributed equally to this work.
Search for more papers by this authorZhao-Xin Xiao
CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032 China
These authors contributed equally to this work.
Search for more papers by this authorMiao Wang
CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032 China
These authors contributed equally to this work.
Search for more papers by this authorShao-Qian Yang
CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032 China
Search for more papers by this authorProf. Jin-Biao Liu
Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000 China
Search for more papers by this authorCorresponding Author
Prof. Zhi-Tao He
CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032 China
School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024 China
Search for more papers by this authorAbstract
Electronically matched nucleophilic 1,6-conjugate addition has been well studied and widely applied in synthetic areas. In contrast, nucleophilic 1,5-conjugate addition represents an electronically forbidden process and is considered unfeasible. Here, we describe modular protocols for 1,5-conjugate addition reactions via palladium hydride catalysis. Both palladium and synergistic Pd/organocatalyst systems are developed to catalyze 1,5-conjugate reaction, followed by inter- or intramolecular [3+2] cyclization. A migratory 1,5-addition protocol is established to corroborate the feasibility of this umpolung concept. The 1,5-addition products are conveniently transformed into a series of privileged enantioenriched motifs, including polysubstituted tetrahydrofuran, dihydrofuran, cyclopropane, cyclobutane, azetidine, oxetane, thietane, spirocycle and bridged rings. Preliminary mechanistic studies corroborate the involvement of palladium hydride catalysis.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202215568-sup-0001-misc_information.pdf24.6 MB | Supporting Information |
ange202215568-sup-0001-SI_CIF_of_3x.cif625.4 KB | Supporting Information |
ange202215568-sup-0001-SI_CIF_of_C-1.cif1.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1E. E. Kwan, Y. Zeng, H. A. Besser, E. N. Jacobsen, Nat. Chem. 2018, 10, 917.
- 2R. Jiang, L. Ding, C. Zheng, S.-L. You, Science 2021, 371, 380.
- 3Y.-J. Yu, F.-L. Zhang, T.-Y. Peng, C.-L. Wang, J. Cheng, C. Chen, K. N. Houk, Y.-F. Wang, Science 2021, 371, 1232.
- 4J. Ma, S. Chen, P. Bellotti, R. Guo, F. Schäfer, A. Heusler, X. Zhang, C. Daniliuc, M. K. Brown, K. N. Houk, F. Glorius, Science 2021, 371, 1338.
- 5Y. Hussain, Tamanna, M. Sharma, A. Kumar, P. Chauhan, Org. Chem. Front. 2022, 9, 572.
- 6P. Chauhan, U. Kaya, D. Enders, Adv. Synth. Catal. 2017, 359, 888.
- 7T. Hayashi, S. Yamamoto, N. Tokunaga, Angew. Chem. Int. Ed. 2005, 44, 4224; Angew. Chem. 2005, 117, 4296.
- 8T. Nishimura, Y. Yasuhara, T. Sawano, T. Hayashi, J. Am. Chem. Soc. 2010, 132, 7872.
- 9T. Sawano, A. Ashouri, T. Nishimura, T. Hayashi, J. Am. Chem. Soc. 2012, 134, 18936.
- 10Y. Luo, I. D. Roy, A. G. E. Madec, H. W. Lam, Angew. Chem. Int. Ed. 2014, 53, 4186; Angew. Chem. 2014, 126, 4270.
- 11F. Meng, X. Li, S. Torker, Y. Shi, X. Shen, A. H. Hoveyda, Nature 2016, 537, 387.
- 12Y. Guo, J. Kootstra, S. R. Harutyunyan, Angew. Chem. Int. Ed. 2018, 57, 13547; Angew. Chem. 2018, 130, 13735.
- 13Y. Huang, S. Torker, X. Li, J. del Pozo, A. H. Hoveyda, Angew. Chem. Int. Ed. 2019, 58, 2685; Angew. Chem. 2019, 131, 2711.
- 14C. J. C. Cooze, W. McNutt, M. D. Schoetz, B. Sosunovych, S. Grigoryan, R. J. Lundgren, J. Am. Chem. Soc. 2021, 143, 10770.
- 15C. Y. Shi, J. Eun, T. R. Newhouse, L. Yin, Angew. Chem. Int. Ed. 2021, 60, 9493; Angew. Chem. 2021, 133, 9579.
- 16X. Tian, Y. Liu, P. Melchiorre, Angew. Chem. Int. Ed. 2012, 51, 6439; Angew. Chem. 2012, 124, 6545.
- 17X. Tian, P. Melchiorre, Angew. Chem. Int. Ed. 2013, 52, 5360; Angew. Chem. 2013, 125, 5468.
- 18L. Dell′Amico, Ł. Albrecht, T. Naicker, P. H. Poulsen, K. A. Jørgensen, J. Am. Chem. Soc. 2013, 135, 8063.
- 19P. H. Poulsen, K. S. Feu, B. M. Paz, F. Jensen, K. A. Jørgensen, Angew. Chem. Int. Ed. 2015, 54, 8203; Angew. Chem. 2015, 127, 8321.
- 20X. Gu, T. Guo, Y. Dai, A. Franchino, J. Fei, C. Zou, D. J. Dixon, J.-X. Ye, Angew. Chem. Int. Ed. 2015, 54, 10249; Angew. Chem. 2015, 127, 10387.
- 21D. Uraguchi, K. Yoshioka, T. Ooi, Nat. Commun. 2017, 8, 14793.
- 22G. Li, X. Huo, X. Jiang, W. Zhang, Chem. Soc. Rev. 2020, 49, 2060.
- 23N. J. Adamson, S. J. Malcolmson, ACS Catal. 2020, 10, 1060.
- 24O. Löber, M. Kawatsura, J. F. Hartwig, J. Am. Chem. Soc. 2001, 123, 4366.
- 25A. Leitner, J. Larsen, C. Steffens, J. F. Hartwig, J. Org. Chem. 2004, 69, 7552.
- 26J. Wilting, M. Janssen, C. Müller, D. Vogt, J. Am. Chem. Soc. 2006, 128, 11374.
- 27X.-H. Yang, V. M. Dong, J. Am. Chem. Soc. 2017, 139, 1774.
- 28N. J. Adamson, E. Hull, S. J. Malcolmson, J. Am. Chem. Soc. 2017, 139, 7180.
- 29J. S. Marcum, C. C. Roberts, R. S. Manan, T. N. Cervarich, S. J. Meek, J. Am. Chem. Soc. 2017, 139, 15580.
- 30N. J. Adamson, K. C. E. Wilbur, S. J. Malcolmson, J. Am. Chem. Soc. 2018, 140, 2761.
- 31X.-H. Yang, R. T. Davison, V. M. Dong, J. Am. Chem. Soc. 2018, 140, 10443.
- 32L. Cheng, M.-M. Li, L.-J. Xiao, J.-H. Xie, Q.-L. Zhou, J. Am. Chem. Soc. 2018, 140, 11627.
- 33S.-Z. Nie, R. T. Davison, V. M. Dong, J. Am. Chem. Soc. 2018, 140, 16450.
- 34S. Park, S. J. Malcolmson, ACS Catal. 2018, 8, 8468.
- 35Q. Zhang, H. Yu, L. Shen, T. Tang, D. Dong, W. Chai, W. Zi, J. Am. Chem. Soc. 2019, 141, 14554.
- 36G. Tran, W. Shao, C. Mazet, J. Am. Chem. Soc. 2019, 141, 14814.
- 37S. Park, N. J. Adamson, S. J. Malcolmson, Chem. Sci. 2019, 10, 5176.
- 38Z. Zhang, F. Xiao, H.-M. Wu, X.-Q. Dong, C.-J. Wang, Org. Lett. 2020, 22, 569.
- 39C. I. Onyeagusi, X. Shao, S. J. Malcolmson, Org. Lett. 2020, 22, 1681.
- 40H. Yang, D. Xing, Chem. Commun. 2020, 56, 3721.
- 41Q. Zhang, D. Dong, W. Zi, J. Am. Chem. Soc. 2020, 142, 15860.
- 42W. Shao, C. Besnard, L. Guénée, C. Mazet, J. Am. Chem. Soc. 2020, 142, 16486.
- 43M.-M. Li, L. Cheng, L.-J. Xiao, J.-H. Xie, Q.-L. Zhou, Angew. Chem. Int. Ed. 2021, 60, 2948; Angew. Chem. 2021, 133, 2984.
- 44J. Xia, T. Hirai, S. Katayama, H. Nagae, W. Zhang, K. Mashima, ACS Catal. 2021, 11, 6643.
- 45A. Y. Jiu, H. S. Slocumb, C. S. Yeung, X.-H. Yang, V. M. Dong, Angew. Chem. Int. Ed. 2021, 60, 19660; Angew. Chem. 2021, 133, 19812.
- 46H. Wang, R. Zhang, Q. Zhang, W. Zi, J. Am. Chem. Soc. 2021, 143, 10948.
- 47J. Long, Y. Li, W. Zhao, G. Yin, Chem. Sci. 2022, 13, 1390.
- 48Q. Zhang, M. Zhu, W. Zi, Chem. 2022, 8, 2784.
- 49V. V. Grushin, Chem. Rev. 1996, 96, 2011.
- 50B. M. Trost, Chem. Eur. J. 1998, 4, 2405.
10.1002/(SICI)1521-3765(19981204)4:12<2405::AID-CHEM2405>3.0.CO;2-0 CAS Web of Science® Google Scholar
- 51H. Zhou, Y. Wang, L. Zhang, M. Cai, S. Luo, J. Am. Chem. Soc. 2017, 139, 3631.
- 52X. Wang, B. Wang, X. Yin, W. Yu, Y. Liao, J. Ye, M. Wang, L. Hu, J. Liao, Angew. Chem. Int. Ed. 2019, 58, 12264; Angew. Chem. 2019, 131, 12392.
- 53Y.-H. Yao, H.-Y. Yang, M. Chen, F. Wu, X.-X. Xu, Z.-H. Guan, J. Am. Chem. Soc. 2021, 143, 85.
- 54S.-Q. Yang, Y.-F. Wang, W.-C. Zhao, G.-Q. Lin, Z.-T. He, J. Am. Chem. Soc. 2021, 143, 7285.
- 55L. Li, S. Wang, P. Luo, R. Wang, Z. Wang, X. Li, Y. Deng, F. Peng, Z. Shao, Nat. Commun. 2021, 12, 5667.
- 56J. Zhang, X. Huo, J. Xiao, L. Zhao, S. Ma, W. Zhang, J. Am. Chem. Soc. 2021, 143, 12622.
- 57Y.-W. Chen, Y. Liu, H.-Y. Lu, G.-Q. Lin, Z.-T. He, Nat. Commun. 2021, 12, 5626.
- 58Z. Yang, J. Wang, Angew. Chem. Int. Ed. 2021, 60, 27288–27292; Angew. Chem. 2021, 133, 27494.
- 59Q. Li, X. Fang, R. Pan, H. Yao, A. Lin, J. Am. Chem. Soc. 2022, 144, 11364.
- 60S. V. Sieger, I. Lubins, B. Breit, ACS Catal. 2022, 12, 11301.
- 61I. M. Jacobson, S. C. Gordon, K. V. Kowdley, E. M. Yoshida, M. Rodriguez-Torres, M. S. Sulkowski, M. L. Shiffman, E. Lawitz, G. Everson, M. Bennett, E. Schiff, M. T. Al-Assi, G. M. Subramanian, D. An, M. Lin, J. McNally, D. Brainard, W. T. Symonds, J. G. McHutchison, K. Patel, J. Feld, S. Pianko, D. R. Nelson, N. Engl. J. Med. 2013, 368, 1867.
- 62L. Celewicz, A. Józ′wiak, P. Ruszkowski, H. Laskowska, A. Olejnik, A. Czarnecka, M. Hoffmann, B. Hładon′, Bioorg. Med. Chem. 2011, 19, 6375.
- 63R. Tanaka, Y. Oyama, S. Imajo, S. Matsuki, M. Ishiguro, Bioorg. Med. Chem. 1997, 5, 1389.
- 64H. Nakamura, G. Koyama, Y. Iitaka, M. Ohno, N. Yagisawa, S. Kondo, K. Maeda, H. Umezawa, J. Am. Chem. Soc. 1974, 96, 4327.
- 65B. Malone, E. A. Campbell, Nat. Struct. Mol. Biol. 2021, 28, 706.
- 66Z.-J. Ma, X.-X. Wang, G. Su, J.-J. Yang, Y.-J. Zhu, Y.-W. Wu, J. Li, L. Lu, L. Zeng, H.-X. Pei, Chem. Biol. Interact. 2016, 256, 209.
- 67J.-Y. Pan, S.-L. Chen, M.-H. Yang, J. Wu, J. Sinkkonen, K. Zou, Nat. Prod. Rep. 2009, 26, 1251.
- 68S. B. Tsogoeva, Eur. J. Org. Chem. 2007, 1701.
- 69Y. Zhang, W. Wang, Catal. Sci. Technol. 2012, 2, 42.
- 70D.-X. Zhu, J.-G. Liu, M.-H. Xu, J. Am. Chem. Soc. 2021, 143, 8583.
- 71R. Hamer, J. J. Tegeler, E. S. Kurtz, R. C. Allen, S. C. Bailey, M. E. Elliott, L. Hellyer, G. C. Helsley, P. Przekop, B. S. Freed, J. White, L. L. Martin, J. Med. Chem. 1996, 39, 246.
- 72M. A. Becker, H. R. Schumacher, R. L. Wortmann, P. A. MacDonald, D. Eustace, W. A. Palo, J. Streit, N. Joseph-Ridge, New Engl. J. Med. 2005, 353, 2450.
- 73A. Vasseur, J. Bruffaerts, I. Marek, Nat. Chem. 2016, 8, 209.
- 74R. K. Dhungana, R. R. Sapkota, D. Niroula, R. Giri, Chem. Sci. 2020, 11, 9757.
- 75T.-S. Mei, H. H. Patel, M. S. Sigman, Nature 2014, 508, 340.
- 76J. Bruffaerts, D. Pierrot, I. Marek, Nat. Chem. 2018, 10, 1164.
- 77J. Liu, Q. Yuan, F. D. Toste, M. S. Sigman, Nat. Chem. 2019, 11, 710.
- 78N. N. Noucti, E. J. Alexanian, Angew. Chem. Int. Ed. 2015, 54, 5447–5450; Angew. Chem. 2015, 127, 5537.
- 79F. Kramm, F. Ullwer, B. Klinnert, M. Zheng, B. Plietker, Angew. Chem. Int. Ed. 2022, 61, e2022051; Angew. Chem. 2022, 134, e202205.
- 80T. T. Talele, J. Med. Chem. 2016, 59, 8712.
- 81D. T. Richard, M. MacCoss, A. D. G. Lawson, J. Med. Chem. 2014, 57, 5845.
- 82M. R. Bauer, P. Di Fruscia, S. C. C. Lucas, I. N. Michaelides, J. E. Nelson, R. I. Storer, B. C. Whitehurst, RSC Med. Chem. 2021, 12, 448.
- 83T. Seiser, T. Saget, D. N. Tran, N. Cramer, Angew. Chem. Int. Ed. 2011, 50, 7740; Angew. Chem. 2011, 123, 7884.
- 84A. Brandi, S. Cicchi, F. M. Cordero, Chem. Rev. 2008, 108, 3988.
- 85R. Brimioulle, T. Bach, Science 2013, 342, 840.
- 86T. R. Blum, Z. D. Miller, D. M. Bates, I. A. Guzei, T. P. Yoon, Science 2016, 354, 1391.
- 87M. R. Becker, E. R. Wearing, C. S. Schindler, Nat. Chem. 2020, 12, 898.
- 88F. W. Goetzke, A. M. L. Hell, L. van Dijk, S. P. Fletcher, Nat. Chem. 2021, 13, 880.
- 89J. J. Rojas, R. A. Croft, A. J. Sterling, E. L. Briggs, D. Antermite, D. C. Schmitt, L. Blagojevic, P. Haycock, A. J. P. White, F. Duarte, C. Choi, J. J. Mousseau, J. A. Bull, Nat. Chem. 2022, 14, 160.
- 90Deposition numbers 2179521 (for 3 x), and 2179522 (for C-1) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.