Empowering Zn Electrode Current Capability Along Interfacial Stability by Optimizing Intrinsic Safe Organic Electrolytes
Farva Ilyas
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorJiahang Chen
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorYang Zhang
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorHuichao Lu
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorYudai Huang
State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046 Xinjiang, China
Search for more papers by this authorHuiyang Ma
College of Chemistry, Zhengzhou University, Henan, 450001, Zhengzhou China
Search for more papers by this authorCorresponding Author
Jiulin Wang
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046 Xinjiang, China
Search for more papers by this authorFarva Ilyas
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorJiahang Chen
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorYang Zhang
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorHuichao Lu
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorYudai Huang
State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046 Xinjiang, China
Search for more papers by this authorHuiyang Ma
College of Chemistry, Zhengzhou University, Henan, 450001, Zhengzhou China
Search for more papers by this authorCorresponding Author
Jiulin Wang
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046 Xinjiang, China
Search for more papers by this authorAbstract
Metallic Zn is one of the most promising anodes, but its practical application has been hindered by dendritic growth and serious interfacial reactions in conventional electrolytes. Herein, ionic liquids are adopted to prepare intrinsically safe electrolytes via combining with TEP or TMP solvents. With this synergy effect, the blends of TEP/TMP with an IL fraction of ≈25 wt% are found to be promising electrolytes, with ionic conductivities comparable to those of standard phosphate-based electrolytes while electrochemical stabilities are considerably improved; over 1000 h at 2.0 mA cm−2 and ≈350 h at 5.0 mA cm−2 with a large areal capacity of 10 mAh cm−2. The use of functionalized IL turns out to be a key factor in enhancing the Zn2+ transport due to the interaction of Zn2+ ions with IL-zincophilic sites resulting in reduced interfacial resistance between the electrodes and electrolyte upon cycling leading to spongy-like highly porous, homogeneous, and dendrite-free zinc as an anode material.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202215110-sup-0001-misc_information.pdf2.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aN. Yesibolati, N. Umirov, A. Koishybay, M. Omarova, I. Kurmanbayeva, Y. Zhang, Y. Zhao, Z. Bakenov, Electrochim. Acta 2015, 152, 505–511;
- 1bY. Cheng, L. Luo, L. Zhong, J. Chen, B. Li, W. Wang, S. X. Mao, C. Wang, V. L. Sprenkle, G. Li, ACS Appl. Mater. Interfaces 2016, 8, 13673–13677;
- 1cF. Wang, E. Hu, W. Sun, T. Gao, X. Ji, X. Fan, F. Han, X.-Q. Yang, K. Xu, C. Wang, Energy Environ. Sci. 2018, 11, 3168–3175.
- 2
- 2aM. Song, H. Tan, D. Chao, H. J. Fan, Adv. Funct. Mater. 2018, 28, 1802564;
- 2bZ. Liu, G. Pulletikurthi, A. Lahiri, T. Cui, F. Endres, Dalton Trans. 2016, 45, 8089–8098;
- 2cW. Lu, C. Xie, H. Zhang, X. Li, ChemSusChem 2018, 11, 3996–4006.
- 3
- 3aD. Kundu, B. D. Adams, V. Duffort, S. H. Vajargah, L. F. Nazar, Nat. Energy 2016, 1, 16119;
- 3bW. Sun, F. Wang, S. Hou, C. Yang, X. Fan, Z. Ma, T. Gao, F. Han, R. Hu, M. Zhu, J. Am. Chem. Soc. 2017, 139, 9775–9778;
- 3cN. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei, C. Chen, X. Liu, J. Chen, J. Am. Chem. Soc. 2016, 138, 12894–12901.
- 4K. Zhao, C. Wang, Y. Yu, M. Yan, Q. Wei, P. He, Y. Dong, Z. Zhang, X. Wang, L. Mai, Adv. Mater. Interfaces 2018, 5, 1800848.
- 5
- 5aJ. F. Parker, C. N. Chervin, I. R. Pala, M. Machler, M. F. Burz, J. W. Long, D. R. Rolison, Science 2017, 356, 415–418;
- 5bF. Mo, G. Liang, Q. Meng, Z. Liu, H. Li, J. Fan, C. Zhi, Energy Environ. Sci. 2019, 12, 706–715;
- 5cZ. Kang, C. Wu, L. Dong, W. Liu, J. Mou, J. Zhang, Z. Chang, B. Jiang, G. Wang, F. Kang, ACS Sustainable Chem. Eng. 2019, 7, 3364–3371.
- 6
- 6aF. Wang, O. Borodin, T. Gao, X. Fan, W. Sun, F. Han, A. Faraone, J. A. Dura, K. Xu, C. Wang, Nat. Mater. 2018, 17, 543–549;
- 6bJ. Zhao, Y. Li, X. Peng, S. Dong, J. Ma, G. Cui, L. Chen, Electrochem. Commun. 2016, 69, 6–10;
- 6cL. Zhang, I. A. Rodríguez-Pérez, H. Jiang, C. Zhang, D. P. Leonard, Q. Guo, W. Wang, S. Han, L. Wang, X. Ji, Adv. Funct. Mater. 2019, 29, 1902653;
- 6dF. Wan, Y. Zhang, L. Zhang, D. Liu, C. Wang, L. Song, Z. Niu, J. Chen, Angew. Chem. Int. Ed. 2019, 58, 7062–7067; Angew. Chem. 2019, 131, 7136–7141.
- 7S. Kaushik, K. Matsumoto, Y. Orikasa, M. Katayama, Y. Inada, Y. Sato, K. Gotoh, H. Ando, R. Hagiwara, J. Power Sources 2021, 483, 229182.
- 8
- 8aP. Senguttuvan, S. D. Han, S. Kim, A. L. Lipson, S. Tepavcevic, T. T. Fister, I. D. Bloom, A. K. Burrell, C. S. Johnson, Adv. Energy Mater. 2016, 6, 1600826;
- 8bS.-D. Han, N. N. Rajput, X. Qu, B. Pan, M. He, M. S. Ferrandon, C. Liao, K. A. Persson, A. K. Burrell, ACS Appl. Mater. Interfaces 2016, 8, 3021–3031;
- 8cC. Pan, R. Zhang, R. G. Nuzzo, A. A. Gewirth, Adv. Energy Mater. 2018, 8, 1800589;
- 8dN. Zhang, Y. Dong, Y. Wang, Y. Wang, J. Li, J. Xu, Y. Liu, L. Jiao, F. Cheng, ACS Appl. Mater. Interfaces 2019, 11, 32978–32986.
- 9
- 9aA. Naveed, H. Yang, Y. Shao, J. Yang, N. Yanna, J. Liu, S. Shi, L. Zhang, A. Ye, B. He, J. Wang, Adv. Mater. 2019, 31, 1900668;
- 9bA. Naveed, H. Yang, J. Yang, Y. Nuli, J. Wang, Angew. Chem. Int. Ed. 2019, 58, 2760–2764; Angew. Chem. 2019, 131, 2786–2790.
- 10
- 10aZ. Liu, S. Z. El Abedin, F. Endres, Electrochim. Acta 2013, 89, 635–643;
- 10bZ. Liu, T. Cui, G. Pulletikurthi, A. Lahiri, T. Carstens, M. Olschewski, F. Endres, Angew. Chem. Int. Ed. 2016, 55, 2889–2893; Angew. Chem. 2016, 128, 2939–2943;
- 10cZ. Liu, G. Pulletikurthi, F. Endres, ACS Appl. Mater. Interfaces 2016, 8, 12158–12164;
- 10dP. Ingale, M. Sakthivel, J.-F. Drillet, J. Electrochem. Soc. 2017, 164, H5224–H5229;
- 10eF. Ilyas, M. Ishaq, M. Jabeen, M. Saeed, A. Ihsan, M. Ahmed, J. Mol. Liq. 2021, 343, 117606.
- 11M. Kar, B. Winther-Jensen, M. Forsyth, D. R. MacFarlane, Phys. Chem. Chem. Phys. 2013, 15, 7191–7197.
- 12
- 12aP. Jankowski, W. Wieczorek, P. Johansson, Energy Storage Mater. 2019, 20, 108–117;
- 12bZ. Wang, Y. Cai, Z. Wang, S. Chen, X. Lu, S. Zhang, J. Solid State Electrochem. 2013, 17, 2839–2848;
- 12cS. Wei, S. Choudhury, J. Xu, P. Nath, Z. Tu, L. Archer, Adv. Mater. 2017, 29, 1605512;
- 12dQ. Yang, Z. Zhang, X.-G. Sun, Y.-S. Hu, H. Xing, S. Dai, Chem. Soc. Rev. 2018, 47, 2020–2064.
- 13M. M. Huie, R. A. DiLeo, A. C. Marschilok, K. J. Takeuchi, E. S. Takeuchi, ACS Appl. Mater. Interfaces 2015, 7, 11724–11731.
- 14Y. Song, J. Hu, J. Tang, W. Gu, L. He, X. Ji, ACS Appl. Mater. Interfaces 2016, 8, 32031–32040.
- 15F. Xie, H. Li, X. Wang, X. Zhi, D. Chao, K. Davey, S. Z. Qiao, Adv. Energy Mater. 2021, 11, 2003419.
- 16Z. Liu, T. Cui, T. Lu, M. Shapouri Ghazvini, F. Endres, J. Phys. Chem. C 2016, 120, 20224–20231.
- 17
- 17aZ. Liu, S. Z. El Abedin, F. Endres, ChemPhysChem 2015, 16, 970–977;
- 17bT. J. Simons, P. C. Howlett, A. A. J. Torriero, D. R. MacFarlane, M. Forsyth, J. Phys. Chem. C 2013, 117, 2662–2669.
- 18Y. Chu, S. Zhang, S. Wu, Z. Hu, G. Cui, J. Luo, Energy Environ. Sci. 2021, 14, 3609–3620.
- 19M. Kar, B. Winther-Jensen, M. Forsyth, D. R. MacFarlane, Phys. Chem. Chem. Phys. 2014, 16, 10816–10822.
- 20
- 20aS. Liu, J. Mao, W. K. Pang, J. Vongsvivut, X. Zeng, L. Thomsen, Y. Wang, J. Liu, D. Li, Z. Guo, Adv. Funct. Mater. 2021, 31, 2104281;
- 20bS. Di, X. Nie, G. Ma, W. Yuan, Y. Wang, Y. Liu, S. Shen, N. Zhang, Energy Storage Mater. 2021, 43, 375–382.
- 21A. Ievtushenko, O. Khyzhun, I. Shtepliuk, O. Bykov, R. Jakieła, S. Tkach, E. Kuzmenko, V. Baturin, O. Karpenko, O. Olifan, G. Lashkarev, J. Alloys Compd. 2017, 722, 683–689.
- 22S. Caporali, M. Pedio, C. Chiappe, C. S. Pomelli, R. G. Acres, U. Bardi, Surf. Sci. 2016, 648, 360–365.
- 23K. Oldiges, D. Diddens, M. Ebrahiminia, J. B. Hooper, I. Cekic-Laskovic, A. Heuer, D. Bedrov, M. Winter, G. Brunklaus, Phys. Chem. Chem. Phys. 2018, 20, 16579–16591.
- 24
- 24aG. G. Kumar, S. Sampath, Solid State Ionics 2003, 160, 289–300;
- 24bM. Johnsi, S. A. Suthanthiraraj, High Perform. Polym. 2015, 27, 877–885.
- 25
- 25aJ. Fan, Q. Xiao, Y. Fang, L. Li, W. Yuan, Ionics 2019, 25, 1303–1313;
- 25bS. Biria, S. Pathreeker, F. S. Genier, I. D. Hosein, ACS Appl. Polymer Mater. 2020, 2, 2111–2118.
- 26G. B. Appetecchi, G. T. Kim, M. Montanino, M. Carewska, R. Marcilla, D. Mecerreyes, I. De Meatza, J. Power Sources 2010, 195, 3668–3675.
- 27C. Xu, B. Sun, T. Gustafsson, K. Edström, D. Brandell, M. Hahlin, J. Mater. Chem. A 2014, 2, 7256–7264.
- 28M. Li, B. Yang, L. Wang, Y. Zhang, Z. Zhang, S. Fang, Z. Zhang, J. Membr. Sci. 2013, 447, 222–227.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.