A Highly Compatible Phototrophic Community for Carbon-Negative Biosynthesis
Chaofeng Li
State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorRuoyu Wang
School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorJiawei Wang
State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorLiangxu Liu
State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorHengrun Li
State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorHaotian Zheng
State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorCorresponding Author
Prof. Jun Ni
State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorChaofeng Li
State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorRuoyu Wang
School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorJiawei Wang
State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorLiangxu Liu
State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorHengrun Li
State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorHaotian Zheng
State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorCorresponding Author
Prof. Jun Ni
State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorAbstract
CO2 sequestration engineering is promising for carbon-negative biosynthesis, and artificial communities can solve more complex problems than monocultures. However, obtaining an ideal photosynthetic community is still a great challenge. Herein, we describe the development of a highly compatible photosynthetic community (HCPC) by integrating a sucrose-producing CO2 sequestration module and a super-coupled module. The cyanobacteria CO2 sequestration module was obtained using stepwise metabolic engineering and then coupled with the efficient sucrose utilization module Vibrio natriegens. Integrated omics analysis indicated that enhanced photosynthetic electron transport and extracellular vesicles promote intercellular communication. Additionally, the HCPC was used to channel CO2 into valuable chemicals, enabling the overall release of −22.27 to −606.59 kgCO2e kg−1 in the end products. This novel light-driven community could facilitate circular economic implementation in the future.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202215013-sup-0001-misc_information.pdf3.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. W. Jones, A. G. Fast, E. D. Carlson, C. A. Wiedel, J. Au, M. R. Antoniewicz, E. T. Papoutsakis, B. P. Tracy, Nat. Commun. 2016, 7, 12800.
- 2
- 2aK. Zhou, K. Qiao, S. Edgar, G. Stephanopoulos, Nat. Biotechnol. 2015, 33, 377–383;
- 2bH. Zhu, H. Meng, W. Zhang, H. Gao, J. Zhou, Y. Zhang, Y. Li, Nat. Commun. 2019, 10, 4282.
- 3
- 3aC. Zuñiga, T. Li, M. T. Guarnieri, J. P. Jenkins, C. T. Li, K. Bingol, Y. M. Kim, M. J. Betenbaugh, K. Zengler, Nat. Commun. 2020, 11, 3803;
- 3bT. L. Weiss, E. J. Young, D. C. Ducat, Metab. Eng. 2017, 44, 236–245.
- 4L. Zhang, L. Chen, J. Diao, X. Song, M. Shi, W. Zhang, Biotechnol. Biofuels 2020, 13, 82.
- 5H. Liu, Y. Cao, J. Guo, X. Xu, Q. Long, L. Song, M. Xian, Microb. Cell Fact. 2021, 20, 6.
- 6
- 6aC. Aditya, F. Bertaux, G. Batt, J. Ruess, Nat. Commun. 2021, 12, 5829;
- 6bJ. K. Kim, Y. Chen, A. J. Hirning, R. N. Alnahhas, K. Josić, M. R. Bennett, Nat. Chem. Biol. 2019, 15, 1102–1109.
- 7P. C. Lin, F. Zhang, H. B. Pakrasi, Sci. Rep. 2020, 10, 390.
- 8W. Kong, D. R. Meldgin, J. J. Collins, T. Lu, Nat. Chem. Biol. 2018, 14, 821–829.
- 9K. A. Moore, S. Altus, J. W. Tay, J. B. Meehl, E. B. Johnson, D. M. Bortz, J. C. Cameron, Nat. Microbiol. 2020, 5, 757–767.
- 10B. Hoff, J. Plassmeier, M. Blankschien, A. C. Letzel, L. Kourtz, H. Schröder, W. Koch, O. Zelder, Angew. Chem. Int. Ed. 2021, 60, 2258–2278; Angew. Chem. 2021, 133, 2288–2308.
- 11I. S. Ng, B. B. Keskin, S. I. Tan, Biotechnol. J. 2020, 15, 1900228.
- 12B. M. Long, W. Y. Hee, R. E. Sharwood, B. D. Rae, S. Kaines, Y. L. Lim, N. D. Nguyen, B. Massey, S. Bala, S. von Caemmerer, M. R. Badger, G. D. Price, Nat. Commun. 2018, 9, 3570.
- 13M.‘ T. Lin, H. Salihovic, F. K. Clark, M. R. Hanson, Sci. Adv. 2022, 8, eabm6871.
- 14H. Liu, M. M. Zhang, D. A. Weise, M. Cheng, H. B. Pakrasi, R. E. Blankenship, Sci. Adv. 2021, 7, eaba5743.
- 15S. G. Hays, L. L. W. Yan, P. A. Silver, D. C. Ducat, J. Biol. Eng. 2017, 11, 4.
- 16X. Li, Z. Zhou, W. Li, Y. Yan, X. Shen, J. Wang, X. Sun, Q. Yuan, Nat. Commun. 2022, 13, 1554.
- 17H. Löwe, P. Sinner, A. Kremling, K. Pflüger-Grau, Microb. Biotechnol. 2020, 13, 97–106.
- 18M. T. Weinstock, E. D. Hesek, C. M. Wilson, D. G. Gibson, Nat. Methods 2016, 13, 849–851.
- 19
- 19aL. Wang, X. Zhang, C. Tang, P. Li, R. Zhu, J. Sun, Y. Zhang, H. Cui, J. Ma, X. Song, W. Zhang, X. Gao, X. Luo, L. You, Y. Chen, Z. Dai, Nat. Commun. 2022, 13, 3879;
- 19bJ. A. Christie-Oleza, D. Sousoni, M. Lloyd, J. Armengaud, D. J. Scanlan, Nat. Microbiol. 2017, 2, 17100.
- 20M. Flecken, H. Wang, L. Popilka, F. U. Hartl, A. Bracher, M. Hayer-Hartl, Cell 2020, 183, 457–473.
- 21M. Yokono, A. Takabayashi, S. Akimoto, A. Tanaka, Nat. Commun. 2015, 6, 6675.
- 22
- 22aV. Mascoli, A. F. Bhatti, L. Bersanini, H. van Amerongen, R. Croce, Nat. Commun. 2022, 13, 3562;
- 22bL. A. Malone, P. Qian, G. E. Mayneord, A. Hitchcock, D. A. Farmer, R. F. Thompson, D. J. K. Swainsbury, N. A. Ranson, C. N. Hunter, M. P. Johnson, Nature 2019, 575, 535–539.
- 23J. Ni, H. Y. Liu, F. Tao, Y. T. Wu, P. Xu, Angew. Chem. Int. Ed. 2018, 57, 15990–15994; Angew. Chem. 2018, 130, 16222–16226.
- 24
- 24aJ. Belliveau, E. T. Papoutsakis, Biotechnol. Bioeng. 2022, 119, 1222–1238;
- 24bC. F. Gonçalves, C. C. Pacheco, P. Tamagnini, P. Oliveira, Environ. Microbiol. 2018, 20, 2354–2369;
- 24cN. Iraci, E. Gaude, T. Leonardi, A. S. H. Costa, C. Cossetti, L. Peruzzotti-Jametti, J. D. Bernstock, H. K. Saini, M. Gelati, A. L. Vescovi, C. Bastos, N. Faria, L. G. Occhipinti, A. J. Enright, C. Frezza, S. Pluchino, Nat. Chem. Biol. 2017, 13, 951–955.
- 25G. R. Monroe, A. M. van Eerde, F. Tessadori, K. J. Duran, S. M. C. Savelberg, J. C. van Alfen, P. A. Terhal, S. N. van der Crabben, K. D. Lichtenbelt, S. A. Fuchs, J. Gerrits, M. J. van Roosmalen, K. L. van Gassen, M. van Aalderen, B. G. Koot, M. Oostendorp, M. Duran, G. Visser, T. J. de Koning, F. Calì, P. Bosco, K. Geleijns, M. G. M. de Sain-van der Velden, N. V. Knoers, J. Bakkers, N. M. Verhoeven-Duif, G. van Haaften, J. J. Jans, Nat. Commun. 2019, 10, 1477.
- 26H. G. Lim, D. H. Kwak, S. Park, S. Woo, J. S. Yang, C. W. Kang, B. Kim, M. H. Noh, S. W. Seo, G. Y. Jung, Nat. Commun. 2019, 10, 2486.
- 27J. Ni, F. Tao, Y. Wang, F. Yao, P. Xu, Green Chem. 2016, 18, 3537–3548.
- 28T. Hao, Z. Xie, M. Wang, L. Liu, Y. Zhang, W. Wang, Z. Zhang, X. Zhao, P. Li, Z. Guo, S. Gao, C. Lou, G. Zhang, J. Merritt, G. P. Horsman, Y. Chen, Nat. Commun. 2019, 10, 3665.
- 29G. Hu, Z. Li, D. Ma, C. Ye, L. Zhang, C. Gao, L. Liu, X. Chen, Nat. Catal. 2021, 4, 395–406.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.