Synthesis of α-Quaternary β-Lactams via Copper-Catalyzed Enantioconvergent Radical C(sp3)−C(sp2) Cross-Coupling with Organoboronate Esters
Dr. Fu-Li Wang
School of Science and Institute of Scientific Research, Great Bay University, Dongguan, 523000 China
Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Lin Liu
School of Science and Institute of Scientific Research, Great Bay University, Dongguan, 523000 China
Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Chang-Jiang Yang
School of Science and Institute of Scientific Research, Great Bay University, Dongguan, 523000 China
Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorCheng Luan
Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055 China
Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorDr. Jing Yang
College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118 China
Search for more papers by this authorDr. Ji-Jun Chen
Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorDr. Qiang-Shuai Gu
Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Dr. Zhong-Liang Li
Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xin-Yuan Liu
Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorDr. Fu-Li Wang
School of Science and Institute of Scientific Research, Great Bay University, Dongguan, 523000 China
Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Lin Liu
School of Science and Institute of Scientific Research, Great Bay University, Dongguan, 523000 China
Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Chang-Jiang Yang
School of Science and Institute of Scientific Research, Great Bay University, Dongguan, 523000 China
Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorCheng Luan
Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055 China
Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorDr. Jing Yang
College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118 China
Search for more papers by this authorDr. Ji-Jun Chen
Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorDr. Qiang-Shuai Gu
Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Dr. Zhong-Liang Li
Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xin-Yuan Liu
Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorAbstract
The copper-catalyzed enantioconvergent radical C(sp3)−C(sp2) cross-coupling of tertiary α-bromo-β-lactams with organoboronate esters could provide the synthetically valuable α-quaternary β-lactams. The challenge arises mainly from the construction of sterically congested quaternary stereocenters between the tertiary alkyl radicals and chiral copper(II) species. Herein, we describe our success in achieving such transformations through the utilization of a copper/hemilabile N,N,N-ligand catalyst to forge the sterically congested chiral C(sp3)−C(sp2) bond via a single-electron reduction/transmetalation/bond formation catalytic cycle. The synthetic potential of this approach is shown in the straightforward conversion of the corresponding products into many valuable building blocks. We hope that the developed catalytic cycle would open up new vistas for more enantioconvergent cross-coupling reactions.
Open Research
Data Availability Statement
The data that support the findings of this study are openly available in Cambridge Crystallographic Data Centre at https://www.ccdc.cam.ac.uk/structures/, reference number 2210247.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202214709-sup-0001-misc_information.pdf10.1 MB | Supporting Information |
ange202214709-sup-0001-SI_Wangfl20220728002_0m.cif435 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1For selected reviews, see:
- 1aC. R. Pitts, T. Lectka, Chem. Rev. 2014, 114, 7930–7953;
- 1bS. France, A. Weatherwax, A. E. Taggi, T. Lectka, Acc. Chem. Res. 2004, 37, 592–600;
- 1cP. A. Magriotis, Eur. J. Org. Chem. 2014, 2647–2657;
- 1d β-Lactams: Unique Structures of Distinction for Novel Molecules (Ed.: B. K. Banik), Springer, Heidelberg, 2013;
10.1007/978-3-642-33188-6 Google Scholar
- 1e Beta-Lactams: Novel Synthetic Pathways and Applications (Ed.: B. K. Banik,), Springer International Publishing AG, 2017;
10.1007/978-3-319-55621-5 Google Scholar
- 1f Synthesis of β-Lactam Antibiotics (Ed.: A. Bruggink), Springer-Science+Business Media, B.V., 2001.
10.1007/978-94-010-0850-1 Google Scholar
- 2X. Zhang, Y. Jia, Curr. Top. Med. Chem. 2020, 20, 1468–1480.
- 3M. O′Driscoll, K. Greenhalgh, A. Young, E. Turos, S. Dickey, D. V. Lim, Bioorg. Med. Chem. 2008, 16, 7832–7837.
- 4T. Kosoglou, P. Statkevich, A. Johnson-Levonas, J. F. Paolini, A. J. Bergman, K. B. Alton, Clin. Pharmacokinet. 2005, 44, 467–494.
- 5For selected reviews, see:
- 5aP. Imbach, M. Lang, C. García-Echeverría, V. Guagnano, M. Noorani, J. Roesel, F. Bitsch, G. Rihs, P. Furet, Bioorg. Med. Chem. Lett. 2007, 17, 358–362;
- 5bC. Gerardin-Charbonnier, S. Auberger, L. Molina, S. Achilefu, M. A. Manresa, P. Vinardell, M. R. Infante, C. Selve, Prep. Biochem. Biotechnol. 1999, 29, 257–272;
- 5cF. Benfatti, G. Cardillo, L. Gentilucci, A. Tolomelli, Bioorg. Med. Chem. Lett. 2007, 17, 1946–1950.
- 6For selected representative examples, see:
- 6aA. E. Taggi, A. M. Hafez, H. Wack, B. Young, W. J. Drury, T. Lectka, J. Am. Chem. Soc. 2000, 122, 7831–7832;
- 6bB. L. Hodous, G. C. Fu, J. Am. Chem. Soc. 2002, 124, 1578–1579;
- 6cR. Shintani, G. C. Fu, Angew. Chem. Int. Ed. 2003, 42, 4082–4085; Angew. Chem. 2003, 115, 4216–4219;
- 6dY.-R. Zhang, L. He, X. Wu, P.-L. Shao, S. Ye, Org. Lett. 2008, 10, 277–280;
- 6eS. Chen, E. C. Salo, K. A. Wheeler, N. J. Kerrigan, Org. Lett. 2012, 14, 1784–1787;
- 6fT. Shu, L. Zhao, S. Li, X.-Y. Chen, C. von Essen, K. Rissanen, D. Enders, Angew. Chem. Int. Ed. 2018, 57, 10985–10988; Angew. Chem. 2018, 130, 11151–11154;
- 6gJ. Qi, F. Wei, S. Huang, C.-H. Tung, Z. Xu, Angew. Chem. Int. Ed. 2021, 60, 4561–4565; Angew. Chem. 2021, 133, 4611–4615;
- 6hJ. Qi, F. Wei, C.-H. Tung, Z. Xu, Angew. Chem. Int. Ed. 2021, 60, 13814–13818; Angew. Chem. 2021, 133, 13933–13937;
- 6iX. Zhong, M. Huang, H. Xiong, Y. Liang, W. Zhou, Q. Cai, Angew. Chem. Int. Ed. 2022, 61, e202208323; Angew. Chem. 2022, 134, e202208323; for the intramolecular cyclization strategy, see:
- 6jL.-Z. Huang, Z. Xuan, H. J. Jeon, Z.-T. Du, J. H. Kim, S.-g. Lee, ACS Catal. 2018, 8, 7340–7345.
- 7
- 7aA. H. Cherney, N. T. Kadunce, S. E. Reisman, Chem. Rev. 2015, 115, 9587–9652;
- 7bJ. Choi, G. C. Fu, Science 2017, 356, eaaf7230;
- 7cG. C. Fu, ACS Cent. Sci. 2017, 3, 692–700;
- 7dX.-Y. Dong, Z.-L. Li, Q.-S. Gu, X.-Y. Liu, J. Am. Chem. Soc. 2022, 144, 17319–17329.
- 8For selected reviews and examples of asymmetric radical transformations, see:
- 8aM. P. Sibi, S. Manyem, J. Zimmerman, Chem. Rev. 2003, 103, 3263–3296;
- 8bD. A. Nicewicz, D. W. C. MacMillan, Science 2008, 322, 77–80;
- 8cJ. Du, K. L. Skubi, D. M. Schultz, T. P. Yoon, Science 2014, 344, 392–396;
- 8dT. Hashimoto, Y. Kawamata, K. Maruoka, Nat. Chem. 2014, 6, 702–705;
- 8eH. Huo, X. Shen, C. Wang, L. Zhang, P. Röse, L.-A. Chen, K. Harms, M. Marsch, G. Hilt, E. Meggers, Nature 2014, 515, 100–103;
- 8fR. Brimioulle, D. Lenhart, M. M. Maturi, T. Bach, Angew. Chem. Int. Ed. 2015, 54, 3872–3890; Angew. Chem. 2015, 127, 3944–3963;
- 8gJ. J. Murphy, D. Bastida, S. Paria, M. Fagnoni, P. Melchiorre, Nature 2016, 532, 218–222;
- 8hW. Zhang, F. Wang, S. D. McCann, D. Wang, P. Chen, S. S. Stahl, G. Liu, Science 2016, 353, 1014–1018;
- 8iN. Kern, M. P. Plesniak, J. J. W. McDouall, D. J. Procter, Nat. Chem. 2017, 9, 1198–1204;
- 8jY. Wang, X. Wen, X. Cui, L. Wojtas, X. P. Zhang, J. Am. Chem. Soc. 2017, 139, 1049–1052;
- 8kC. Li, K. Lang, H. Lu, Y. Hu, X. Cui, L. Wojtas, X. P. Zhang, Angew. Chem. Int. Ed. 2018, 57, 16837–16841; Angew. Chem. 2018, 130, 17079–17083;
- 8lR. S. J. Proctor, H. J. Davis, R. J. Phipps, Science 2018, 360, 419–422;
- 8mK. F. Biegasiewicz, S. J. Cooper, X. Gao, D. G. Oblinsky, J. H. Kim, S. E. Garfinkle, L. A. Joyce, B. A. Sandoval, G. D. Scholes, T. K. Hyster, Science 2019, 364, 1166–1169;
- 8nY. Yang, I. Cho, X. Qi, P. Liu, F. H. Arnold, Nat. Chem. 2019, 11, 987–993;
- 8oK. Lang, C. Li, I. Kim, X. P. Zhang, J. Am. Chem. Soc. 2020, 142, 20902–20911;
- 8pK. M. Nakafuku, Z. Zhang, E. A. Wappes, L. M. Stateman, A. D. Chen, D. A. Nagib, Nat. Chem. 2020, 12, 697–704;
- 8qJ. Xie, P. Xu, Y. Zhu, J. Wang, W.-C. C. Lee, X. P. Zhang, J. Am. Chem. Soc. 2021, 143, 11670–11678;
- 8rQ. Zhou, M. Chin, Y. Fu, P. Liu, Y. Yang, Science 2021, 374, 1612–1616;
- 8sH. Iwamoto, K. Endo, Y. Ozawa, Y. Watanabe, K. Kubota, T. Imamoto, H. Ito, Angew. Chem. Int. Ed. 2019, 58, 11112–11117; Angew. Chem. 2019, 131, 11229–11234;
- 8tL. Wu, G. Yang, W. Zhang, CCS Chem. 2020, 2, 623–631.
- 9
- 9aZ. Wang, H. Yin, G. C. Fu, Nature 2018, 563, 379–383;
- 9bZ. Wang, Z.-P. Yang, G. C. Fu, Nat. Chem. 2021, 13, 236–242.
- 10For enantioconvergent transformation of tertiary alkyl halides other than radical strategies, see:
- 10aS. Ma, X. Han, S. Krishnan, S. C. Virgil, B. M. Stoltz, Angew. Chem. Int. Ed. 2009, 48, 8037–8041; Angew. Chem. 2009, 121, 8181–8185;
- 10bJ. Li, M. Kong, B. Qiao, R. Lee, X. Zhao, Z. Jiang, Nat. Commun. 2018, 9, 2445;
- 10cX. Zhang, J. Ren, S. M. Tan, D. Tan, R. Lee, C.-H. Tan, Science 2019, 363, 400–404.
- 11
- 11aX.-Y. Dong, Y.-F. Zhang, C.-L. Ma, Q.-S. Gu, F.-L. Wang, Z.-L. Li, S.-P. Jiang, X.-Y. Liu, Nat. Chem. 2019, 11, 1158–1166;
- 11bS.-P. Jiang, X.-Y. Dong, Q.-S. Gu, L. Ye, Z.-L. Li, X.-Y. Liu, J. Am. Chem. Soc. 2020, 142, 19652–19659;
- 11cX.-L. Su, L. Ye, J.-J. Chen, X.-D. Liu, S.-P. Jiang, F.-L. Wang, L. Liu, C.-J. Yang, X.-Y. Chang, Z.-L. Li, Q.-S. Gu, X.-Y. Liu, Angew. Chem. Int. Ed. 2021, 60, 380–384; Angew. Chem. 2021, 133, 384–388;
- 11dY.-F. Zhang, X.-Y. Dong, J.-T. Cheng, N.-Y. Yang, L.-L. Wang, F.-L. Wang, C. Luan, J. Liu, Z.-L. Li, Q.-S. Gu, X.-Y. Liu, J. Am. Chem. Soc. 2021, 143, 15413–15419;
- 11eP.-F. Wang, J. Yu, K.-X. Guo, S.-P. Jiang, J.-J. Chen, Q.-S. Gu, J.-R. Liu, X. Hong, Z.-L. Li, X.-Y. Liu, J. Am. Chem. Soc. 2022, 144, 6442–6452.
- 12F.-L. Wang, C.-J. Yang, J.-R. Liu, N.-Y. Yang, X.-Y. Dong, R.-Q. Jiang, X.-Y. Chang, Z.-L. Li, G.-X. Xu, D.-L. Yuan, Y.-S. Zhang, Q.-S. Gu, X. Hong, X.-Y. Liu, Nat. Chem. 2022, 14, 949–957.
- 13
- 13aQ. Liang, P. J. Walsh, T. Jia, ACS Catal. 2020, 10, 2633–2639;
- 13bT. Iwamoto, C. Okuzono, L. Adak, M. Jin, M. Nakamura, Chem. Commun. 2019, 55, 1128–1131.
- 14
- 14aD. T. Richens, Chem. Rev. 2005, 105, 1961–2002;
- 14bA. E. King, B. L. Ryland, T. C. Brunold, S. S. Stahl, Organometallics 2012, 31, 7948–7957;
- 14cA. Vasilopoulos, S. L. Zultanski, S. S. Stahl, J. Am. Chem. Soc. 2017, 139, 7705–7708;
- 14dW. Zhang, L. Wu, P. Chen, G. Liu, Angew. Chem. Int. Ed. 2019, 58, 6425–6429; Angew. Chem. 2019, 131, 6491–6495;
- 14eL. Wu, F. Wang, P. Chen, G. Liu, J. Am. Chem. Soc. 2019, 141, 1887–1892;
- 14fL. Wu, F. Wang, X. Wan, D. Wang, P. Chen, G. Liu, J. Am. Chem. Soc. 2017, 139, 2904–2907.
- 15
- 15aM. Lauer, G. Wulff, J. Organomet. Chem. 1983, 256, 1–9;
- 15bF. Dallacker, E. M. Both-Pollmann, W. Muellners, Chem.-Ztg. 1984, 108, 287–288; for copper-catalyzed racemic cross-coupling of organoboron esters, see:
- 15cY.-Y. Sun, J. Yi, X. Lu, Z.-Q. Zhang, B. Xiao, Y. Fu, Chem. Commun. 2014, 50, 11060–11062;
- 15dG.-Z. Wang, J. Jiang, X.-S. Bu, J.-J. Dai, J. Xu, Y. Fu, H.-J. Xu, Org. Lett. 2015, 17, 3682–3685;
- 15eC.-T. Yang, Z.-Q. Zhang, Y.-C. Liu, L. Liu, Angew. Chem. Int. Ed. 2011, 50, 3904–3907; Angew. Chem. 2011, 123, 3990–3993.
- 16F. Sladojevich, A. Trabocchi, A. Guarna, D. J. Dixon, J. Am. Chem. Soc. 2011, 133, 1710–1713.
- 17
- 17aN. Hara, S. Nakamura, Y. Funahashi, N. Shibata, Adv. Synth. Catal. 2011, 353, 2976–2980;
- 17bN. Hara, S. Nakamura, M. Sano, R. Tamura, Y. Funahashi, N. Shibata, Chem. Eur. J. 2012, 18, 9276–9280;
- 17cK. Fujita, M. Miura, Y. Funahashi, T. Hatanaka, S. Nakamura, Org. Lett. 2021, 23, 2104–2108;
- 17dS. Nakamura, N. Matsumoto, M. Kibe, K. Abe, T. Takehara, T. Suzuki, Adv. Synth. Catal. 2022, 364, 781–786.
- 18
- 18aC.-J. Li, Chem. Rev. 2005, 105, 3095–3166;
- 18bD. V. Partyka, Chem. Rev. 2011, 111, 1529–1595;
- 18cI. Hoffmann, B. Blumenröder, S. Onodi neé Thumann, S. Dommer, J. Schatz, Green Chem. 2015, 17, 3844–3857.
- 19Deposition number 2210247 contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.