Programming Non-Nucleic Acid Molecules into Computational Nucleic Acid Systems
Qiu-Long Zhang
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
These authors contributed equally to this work.
Search for more papers by this authorYang Wang
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
These authors contributed equally to this work.
Search for more papers by this authorLiang-Liang Wang
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
These authors contributed equally to this work.
Search for more papers by this authorFan Xie
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorRuo-Yue Wu
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorXu-Yang Ma
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorHan Li
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorYan Liu
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorCorresponding Author
Prof. Shunchun Yao
School of Electric Power Engineering, South China University of Technology, Guangzhou, 510641 China
Search for more papers by this authorCorresponding Author
Prof. Liang Xu
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorQiu-Long Zhang
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
These authors contributed equally to this work.
Search for more papers by this authorYang Wang
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
These authors contributed equally to this work.
Search for more papers by this authorLiang-Liang Wang
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
These authors contributed equally to this work.
Search for more papers by this authorFan Xie
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorRuo-Yue Wu
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorXu-Yang Ma
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorHan Li
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorYan Liu
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorCorresponding Author
Prof. Shunchun Yao
School of Electric Power Engineering, South China University of Technology, Guangzhou, 510641 China
Search for more papers by this authorCorresponding Author
Prof. Liang Xu
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorAbstract
Nucleic acid (NA) computation has been widely developed in the past years to solve kinds of logic and mathematic issues in both information technologies and biomedical analysis. However, the difficulty to integrate non-NA molecules limits its power as a universal platform for molecular computation. Here, we report a versatile prototype of hybridized computation integrated with both nucleic acids and non-NA molecules. Employing the conformationally controlled ligand converters, we demonstrate that non-NA molecules, including both small molecules and proteins, can be computed as nucleic acid strands to construct the circuitry with increased complexity and scalability, and can be even programmed to solve arithmetical calculations within the computational nucleic acid system. This study opens a new door for molecular computation in which all-NA circuits can be expanded with integration of various ligands, and meanwhile, ligands can be precisely programmed by the nuclei acid computation.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202214698-sup-0001-misc_information.pdf2.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D. Y. Zhang, G. Seelig, Nat. Chem. 2011, 3, 103–113.
- 2Y. Krishnan, F. C. Simmel, Angew. Chem. Int. Ed. 2011, 50, 3124–3156; Angew. Chem. 2011, 123, 3180–3215.
- 3C. Jung, A. D. Ellington, Acc. Chem. Res. 2014, 47, 1825–1835.
- 4Y.-J. Chen, B. Groves, R. A. Muscat, G. Seelig, Nat. Nanotechnol. 2015, 10, 748–760.
- 5L. Yue, S. Wang, Z. Zhou, I. Willner, J. Am. Chem. Soc. 2020, 142, 21577–21594.
- 6L. Chen, W. Chen, G. Liu, J. Li, C. Lu, J. Li, W. Tan, H. Yang, Chem. Soc. Rev. 2021, 50, 12551–12575.
- 7L. M. Adleman, Science 1994, 266, 1021–1024.
- 8E. Katz, V. Privman, Chem. Soc. Rev. 2010, 39, 1835–1857.
- 9S. S. Wang, A. D. Ellington, Chem. Rev. 2019, 119, 6370–6383.
- 10F. C. Simmel, B. Yurke, H. R. Singh, Chem. Rev. 2019, 119, 6326–6369.
- 11M. N. Stojanovic, D. Stefanovic, J. Am. Chem. Soc. 2003, 125, 6673–6676.
- 12D. Y. Zhang, A. J. Turberfield, B. Yurke, E. Winfree, Science 2007, 318, 1121–1125.
- 13J. Elbaz, O. Lioubashevski, F. Wang, F. Remacle, R. D. Levine, I. Willner, Nat. Nanotechnol. 2010, 5, 417–422.
- 14L. Qian, E. Winfree, Science 2011, 332, 1196–1201.
- 15N. Srinivas, J. Parkin, G. Seelig, E. Winfree, D. Soloveichik, Science 2017, 358, eaal2052.
- 16E. Del Grosso, A. Amodio, G. Ragazzon, L. J. Prins, F. Ricci, Angew. Chem. Int. Ed. 2018, 57, 10489–10493; Angew. Chem. 2018, 130, 10649–10653.
- 17H. Su, J. Xu, Q. Wang, F. Wang, X. Zhou, Nat. Commun. 2019, 10, 5390.
- 18N. Xie, M. Li, Y. Wang, H. Lv, J. Shi, J. Li, Q. Li, F. Wang, C. Fan, J. Am. Chem. Soc. 2022, 144, 9479–9488.
- 19S. Shah, J. Wee, T. Song, L. Ceze, K. Strauss, Y.-J. Chen, J. Reif, J. Am. Chem. Soc. 2020, 142, 9587–9593.
- 20J. Deng, A. Walther, Nat. Commun. 2021, 12, 5132.
- 21Z. Zhou, Y. Ouyang, J. Wang, I. Willner, J. Am. Chem. Soc. 2021, 143, 5071–5079.
- 22K. M. Cherry, L. L. Qian, Nature 2018, 559, 370–376.
- 23L. Qian, E. Winfree, J. Bruck, Nature 2011, 475, 368–372.
- 24S. Ogasawara, T. Ami, K. Fujimoto, J. Am. Chem. Soc. 2008, 130, 10050–10051.
- 25A. Prokup, J. Hemphill, A. Deiters, J. Am. Chem. Soc. 2012, 134, 3810–3815.
- 26F. Huang, M. You, D. Han, X. Xiong, H. Liang, W. Tan, J. Am. Chem. Soc. 2013, 135, 7967–7973.
- 27X. Zhang, X. Xu, S. Li, L. H. Wang, J. Zhang, R. Wang, Sci. Rep. 2018, 8, 8819.
- 28X. Xiong, M. Xiao, W. Lai, L. Li, C. Fan, H. Pei, Angew. Chem. Int. Ed. 2021, 60, 3397–3401; Angew. Chem. 2021, 133, 3439–3443.
- 29J. Wang, Z. Li, Z. Zhou, Y. Ouyang, J. Zhang, X. Ma, H. Tian, I. Willner, Chem. Sci. 2021, 12, 11204–11212.
- 30J. Elbaz, F. Wang, F. Remacle, I. Willner, Nano Lett. 2012, 12, 6049–6054.
- 31A. Amodio, B. Zhao, A. Porchetta, A. Idili, M. Castronovo, C. H. Fan, F. Ricci, J. Am. Chem. Soc. 2014, 136, 16469–16472.
- 32Y. Guo, D. Yao, B. Zheng, X. Sun, X. Zhou, B. Wei, S. Xiao, M. He, C. Li, H. Liang, ACS Nano 2020, 14, 8317–8327.
- 33Q. Tang, W. Lai, P. Wang, X. Xiong, M. Xiao, L. Li, C. Fan, H. Pei, Angew. Chem. Int. Ed. 2021, 60, 15013–15019; Angew. Chem. 2021, 133, 15140–15146.
- 34A. Porchetta, A. Vallee-Belisle, K. W. Plaxco, F. Ricci, J. Am. Chem. Soc. 2013, 135, 13238–13241.
- 35B. Kankia, J. Phys. Chem. B 2020, 124, 4263–4269.
- 36L.-L. Wang, Q.-L. Zhang, Y. Wang, Y. Liu, J. Lin, F. Xie, L. Xu, Chem. Sci. 2021, 12, 8698–8705.
- 37T. A. Feagin, N. Maganzini, H. T. Soh, ACS Sens. 2018, 3, 1611–1615.
- 38J. D. Munzar, A. Ng, D. Juncker, Chem. Soc. Rev. 2019, 48, 1390–1419.
- 39D. Han, Z. Zhu, C. Wu, L. Peng, L. Zhou, B. Gulbakan, G. Zhu, K. R. Williams, W. Tan, J. Am. Chem. Soc. 2012, 134, 20797–20804.
- 40J. Zhu, L. Zhang, Z. Zhou, S. Dong, E. Wang, Anal. Chem. 2014, 86, 312–316.
- 41D. K. Agrawal, R. Schulman, Nucleic Acids Res. 2020, 48, 6431–6444.
- 42Q.-L. Zhang, L.-L. Wang, Y. Liu, J. Lin, L. Xu, Nat. Commun. 2021, 12, 4654.
- 43A. J. Thubagere, C. Thachuk, J. Berleant, R. F. Johnson, D. A. Ardelean, K. M. Cherry, L. Qian, Nat. Commun. 2017, 8, 14373.
- 44B. Wang, C. Thachuk, A. D. Ellington, E. Winfree, D. Soloveichik, Proc. Natl. Acad. Sci. USA 2018, 115, E12182–E12191.
- 45D. E. Huizenga, J. W. J. B. Szostak, Biochemistry 1995, 34, 656–665.
- 46L. Challier, R. Miranda-Castro, B. Barbe, C. Fave, B. Limoges, E. Peyrin, C. Ravelet, E. Fiore, P. Labbé, L. J. A. c. Coche-Guérente, Anal. Chem. 2016, 88, 11963–11971.
- 47L. Sun, Q. J. T. Zhao, Talanta 2018, 189, 442–450.
- 48D. M. Tasset, M. F. Kubik, W. Steiner, J. Mol. Biol. 1997, 272, 688–698.
- 49D. Y. Zhang, E. Winfree, J. Am. Chem. Soc. 2009, 131, 17303–17314.
- 50L. Qian, E. Winfree, J. R. Soc. Interface 2011, 8, 1281–1297.
- 51T. Song, A. Eshra, S. Shah, H. Bui, D. Fu, M. Yang, R. Mokhtar, J. Reif, Nat. Nanotechnol. 2019, 14, 1075–1081.
- 52F. Wang, H. Lv, Q. Li, J. Li, X. Zhang, J. Shi, L. Wang, C. Fan, Nat. Commun. 2020, 11, 121.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.