Interparticle Charge-Transport-Enhanced Electrochemiluminescence of Quantum-Dot Aerogels
Xuwen Gao
School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
These authors contributed equally to this work.
Search for more papers by this authorDr. Guocan Jiang
Physical Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
These authors contributed equally to this work.
Search for more papers by this authorCunyuan Gao
School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
Search for more papers by this authorDr. Anatol Prudnikau
Physical Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
Search for more papers by this authorDr. René Hübner
Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
Search for more papers by this authorProf. Jinhua Zhan
School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
Search for more papers by this authorCorresponding Author
Prof. Guizheng Zou
School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
Search for more papers by this authorCorresponding Author
Prof. Alexander Eychmüller
Physical Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
Search for more papers by this authorCorresponding Author
Prof. Bin Cai
School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
Search for more papers by this authorXuwen Gao
School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
These authors contributed equally to this work.
Search for more papers by this authorDr. Guocan Jiang
Physical Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
These authors contributed equally to this work.
Search for more papers by this authorCunyuan Gao
School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
Search for more papers by this authorDr. Anatol Prudnikau
Physical Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
Search for more papers by this authorDr. René Hübner
Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
Search for more papers by this authorProf. Jinhua Zhan
School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
Search for more papers by this authorCorresponding Author
Prof. Guizheng Zou
School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
Search for more papers by this authorCorresponding Author
Prof. Alexander Eychmüller
Physical Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
Search for more papers by this authorCorresponding Author
Prof. Bin Cai
School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
Search for more papers by this authorAbstract
Electrochemiluminescence (ECL) represents a widely explored technique to generate light, in which the emission intensity relies critically on the charge-transfer reactions between electrogenerated radicals. Two types of charge-transfer mechanisms have been postulated for ECL generation, but the manipulation and effective probing of these routes remain a fundamental challenge. Here, we demonstrate the design of quantum dot (QD) aerogels as novel ECL luminophores via a versatile water-induced gelation strategy. The strong electronic coupling between adjacent QDs enables efficient charge transport within the aerogel network, leading to the generation of highly efficient ECL based on the selectively improved interparticle charge-transfer route. This mechanism is further verified by designing CdSe-CdTe mixed QD aerogels, where the two mechanistic routes are clearly decoupled for ECL generation. We anticipate our work will advance the fundamental understanding of ECL and prove useful for designing next-generation QD-based devices.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202214487-sup-0001-misc_information.pdf3.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aC. R. Kagan, E. Lifshitz, E. H. Sargent, D. V. Talapin, Science 2016, 353, aac5523;
- 1bM. A. Boles, D. Ling, T. Hyeon, D. V. Talapin, Nat. Mater. 2016, 15, 364.
- 2
- 2aJ. Owen, L. Brus, J. Am. Chem. Soc. 2017, 139, 10939–10943;
- 2bU. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, Nat. Methods 2008, 5, 763–775.
- 3
- 3aZ. Zhang, J. Sung, D. T. W. Toolan, S. Han, R. Pandya, M. P. Weir, J. Xiao, S. Dowland, M. Liu, A. J. Ryan, R. A. L. Jones, S. Huang, A. Rao, Nat. Mater. 2022, 21, 533–539;
- 3bK. Whitham, J. Yang, B. H. Savitzky, L. F. Kourkoutis, F. Wise, T. Hanrath, Nat. Mater. 2016, 15, 557–563;
- 3cD. Zherebetskyy, M. Scheele, Y. Zhang, N. Bronstein, C. Thompson, D. Britt, M. Salmeron, P. Alivisatos, L. W. Wang, Science 2014, 344, 1380–1384;
- 3dC. R. Kagan, C. B. Murray, Nat. Nanotechnol. 2015, 10, 1013–1026.
- 4
- 4aV. Sayevich, Z. L. Robinson, Y. Kim, O. V. Kozlov, H. Jung, T. Nakotte, Y. S. Park, V. I. Klimov, Nat. Nanotechnol. 2021, 16, 673–679;
- 4bT. Kim, K. H. Kim, S. Kim, S. M. Choi, H. Jang, H. K. Seo, H. Lee, D. Y. Chung, E. Jang, Nature 2020, 586, 385–389.
- 5
- 5aF. Meinardi, H. McDaniel, F. Carulli, A. Colombo, K. A. Velizhanin, N. S. Makarov, R. Simonutti, V. I. Klimov, S. Brovelli, Nat. Nanotechnol. 2015, 10, 878–885;
- 5bC. H. Chuang, P. R. Brown, V. Bulovic, M. G. Bawendi, Nat. Mater. 2014, 13, 796–801.
- 6
- 6aP. D. Howes, R. Chandrawati, M. M. Stevens, Science 2014, 346, 1247390;
- 6bO. T. Bruns, T. S. Bischof, D. K. Harris, D. Franke, Y. Shi, L. Riedemann, A. Bartelt, F. B. Jaworski, J. A. Carr, C. J. Rowlands, M. W. B. Wilson, O. Chen, H. Wei, G. W. Hwang, D. M. Montana, I. Coropceanu, O. B. Achorn, J. Kloepper, J. Heeren, P. T. C. So, D. Fukumura, K. F. Jensen, R. K. Jain, M. G. Bawendi, Nat. Biomed. Eng. 2017, 1, 0056.
- 7
- 7aP. Wu, X. Hou, J. J. Xu, H. Y. Chen, Chem. Rev. 2014, 114, 11027–11059;
- 7bZ. Ding, B. M. Quinn, S. K. Haram, L. E. Pell, B. A. Korgel, A. J. Bard, Science 2002, 296, 1293–1297.
- 8
- 8aM. M. Richter, Chem. Rev. 2004, 104, 3003–3036;
- 8bC. Ma, Y. Cao, X. Gou, J. J. Zhu, Anal. Chem. 2020, 92, 431–454.
- 9W. Miao, Chem. Rev. 2008, 108, 2506–2553.
- 10
- 10aM. Hesari, Z. Ding, Acc. Chem. Res. 2017, 50, 218–230;
- 10bD. Zhu, Y. Zhang, S. Bao, N. Wang, S. Yu, R. Luo, J. Ma, H. Ju, J. Lei, J. Am. Chem. Soc. 2021, 143, 3049–3053;
- 10cX. Tan, B. Zhang, G. Zou, J. Am. Chem. Soc. 2017, 139, 8772–8776.
- 11J. Dong, Y. Lu, Y. Xu, F. Chen, J. Yang, Y. Chen, J. Feng, Nature 2021, 596, 244–249.
- 12Z. Cao, Y. Shu, H. Qin, B. Su, X. Peng, ACS Cent. Sci. 2020, 6, 1129–1137.
- 13
- 13aV. Sayevich, B. Cai, A. Benad, D. Haubold, L. Sonntag, N. Gaponik, V. Lesnyak, A. Eychmüller, Angew. Chem. Int. Ed. 2016, 55, 6334–6338; Angew. Chem. 2016, 128, 6442–6446;
- 13bA. Singh, B. A. Lindquist, G. K. Ong, R. B. Jadrich, A. Singh, H. Ha, C. J. Ellison, T. M. Truskett, D. J. Milliron, Angew. Chem. Int. Ed. 2015, 54, 14840–14844; Angew. Chem. 2015, 127, 15053–15057.
- 14X. Geng, S. Li, L. Mawella-Vithanage, T. Ma, M. Kilani, B. Wang, L. Ma, C. C. Hewa-Rahinduwage, A. Shafikova, E. Nikolla, G. Mao, S. L. Brock, L. Zhang, L. Luo, Nat. Commun. 2021, 12, 4895.
- 15M. V. Kovalenko, M. Scheele, D. V. Talapin, Science 2009, 324, 1417–1420.
- 16I. Coropceanu, E. M. Janke, J. Portner, D. Haubold, T. D. Nguyen, A. Das, C. P. N. Tanner, J. K. Utterback, S. W. Teitelbaum, M. H. Hudson, N. A. Sarma, A. M. Hinkle, C. J. Tassone, A. Eychmüller, D. T. Limmer, M. Olvera de la Cruz, N. S. Ginsberg, D. V. Talapin, Science 2022, 375, 1422–1426.
- 17
- 17aJ. L. Mohanan, I. U. Arachchige, S. L. Brock, Science 2005, 307, 397–400;
- 17bC. C. Hewa-Rahinduwage, X. Geng, K. L. Silva, X. Niu, L. Zhang, S. L. Brock, L. Luo, J. Am. Chem. Soc. 2020, 142, 12207–12215.
- 18A. Abelson, C. Qian, T. Salk, Z. Luan, K. Fu, J. G. Zheng, J. L. Wardini, M. Law, Nat. Mater. 2020, 19, 49–55.
- 19G. Shi, H. Wang, Y. Zhang, C. Cheng, T. Zhai, B. Chen, X. Liu, R. Jono, X. Mao, Y. Liu, X. Zhang, X. Ling, Y. Zhang, X. Meng, Y. Chen, S. Duhm, L. Zhang, T. Li, L. Wang, S. Xiong, T. Sagawa, T. Kubo, H. Segawa, Q. Shen, Z. Liu, W. Ma, Nat. Commun. 2021, 12, 4381.
- 20
- 20aI. U. Arachchige, S. L. Brock, J. Am. Chem. Soc. 2006, 128, 7964–7971;
- 20bP. Rusch, D. Zambo, N. C. Bigall, Acc. Chem. Res. 2020, 53, 2414–2424;
- 20cS. Sanchez-Paradinas, D. Dorfs, S. Friebe, A. Freytag, A. Wolf, N. C. Bigall, Adv. Mater. 2015, 27, 6152–6156.
- 21H. Peng, Z. Huang, H. Deng, W. Wu, K. Huang, Z. Li, W. Chen, J. Liu, Angew. Chem. Int. Ed. 2020, 59, 9982–9985; Angew. Chem. 2020, 132, 10068–10071.
- 22
- 22aM. Hesari, K. N. Swanick, J. Lu, R. Whyte, S. Wang, Z. Ding, J. Am. Chem. Soc. 2015, 137, 11266–11269;
- 22bK. N. Swanick, S. Ladouceur, E. Z. Colman, Z. Ding, Angew. Chem. Int. Ed. 2012, 51, 11079–11082; Angew. Chem. 2012, 124, 11241–11244.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.