Toward Precise Antitumoral Photodynamic Therapy Using a Dual Receptor-Mediated Bioorthogonal Activation Approach
Dr. Jacky C. H. Chu
Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
Search for more papers by this authorDr. Clarence T. T. Wong
Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
Current address: Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
Search for more papers by this authorCorresponding Author
Prof. Dennis K. P. Ng
Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
Search for more papers by this authorDr. Jacky C. H. Chu
Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
Search for more papers by this authorDr. Clarence T. T. Wong
Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
Current address: Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
Search for more papers by this authorCorresponding Author
Prof. Dennis K. P. Ng
Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
Search for more papers by this authorAbstract
Targeted delivery and specific activation of photosensitizers can greatly improve the treatment outcome of photodynamic therapy. To this end, we report herein a novel dual receptor-mediated bioorthogonal activation approach to enhance the tumor specificity of the photodynamic action. It involves the targeted delivery of a biotinylated boron dipyrromethene (BODIPY)-based photosensitizer, which is quenched in the native form by the attached 1,2,4,5-tetrazine unit, and an epidermal growth factor receptor (EGFR)-targeting cyclic peptide conjugated with a bicycle[6.1.0]non-4-yne moiety. Only for cancer cells that overexpress both the biotin receptor and EGFR, the two components can be internalized preferentially where they undergo an inverse electron-demand Diels–Alder reaction, leading to restoration of the photodynamic activity of the BODIPY core. By using a range of cell lines with different expression levels of these two receptors, we have demonstrated that this stepwise “deliver-and-click” approach can confine the photodynamic action on a specific type of cancer cells.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202214473-sup-0001-misc_information.pdf3.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aD. E. J. G. J. Dolmans, D. Fukumura, R. K. Jain, Nat. Rev. Cancer 2003, 3, 380–387;
- 1bS. B. Brown, E. A. Brown, I. Walker, Lancet Oncol. 2004, 5, 497–508;
- 1cJ. H. Correia, J. A. Rodrigues, S. Pimenta, T. Dong, Z. Yang, Pharmaceutics 2021, 13, 1332;
- 1dJ. F. Algorri, M. Ochoa, P. Roldán-Varona, L. Rodríguez-Cobo, J. M. López-Higuera, Cancers 2021, 13, 4447.
- 2A. P. Castano, P. Mroz, M. R. Hamblin, Nat. Rev. Cancer 2006, 6, 535–545.
- 3
- 3aM. Lan, S. Zhao, W. Liu, C.-S. Lee, W. Zhang, P. Wang, Adv. Healthcare Mater. 2019, 8, 1900132;
- 3bX. Zhao, J. Liu, J. Fan, H. Chao, X. Peng, Chem. Soc. Rev. 2021, 50, 4185–4219;
- 3cT. C. Pham, V.-N. Nguyen, Y. Choi, S. Lee, J. Yoon, Chem. Rev. 2021, 121, 13454–13619;
- 3dX. Wei, C. Zhang, S. He, J. Huang, J. Huang, S. S. Liew, Z. Zeng, K. Pu, Angew. Chem. Int. Ed. 2022, 61, e202202966; Angew. Chem. 2022, 134, e202202966.
- 4
- 4aV. Almeida-Marrero, E. van de Winckel, E. Anaya-Plaza, T. Torres, A. de la Escosura, Chem. Soc. Rev. 2018, 47, 7369–7400;
- 4bJ. Sandland, R. W. Boyle, Bioconjugate Chem. 2019, 30, 975–993;
- 4cP. Gierlich, A. I. Mata, C. Donohoe, R. M. M. Brito, M. O. Senge, L. C. Gomes-da-Silva, Molecules 2020, 25, 5317.
- 5
- 5aZ. Yang, H. Luo, Z. Cao, Y. Chen, J. Gao, Y. Li, Q. Jiang, R. Xu, J. Liu, Nanoscale 2016, 8, 11543–11558;
- 5bN. Khan, Ruchika, R. K. Dhritlahre, A. Saneja, Drug Discov. Today 2022, 27, 2288–2299.
- 6F. Thoreau, L. Vanwonterghem, M. Henry, J.-L. Coll, D. Boturyn, Org. Biomol. Chem. 2018, 16, 4101–4107.
- 7Y. Cheng, C. Sun, X. Ou, B. Liu, X. Lou, F. Xia, Chem. Sci. 2017, 8, 4571–4578.
- 8S. Bhattacharyya, J. A. Khan, G. L. Curran, J. D. Robertson, R. Bhattacharya, P. Mukherjee, Adv. Mater. 2011, 23, 5034–5038.
- 9J.-Y. Lee, U. Termsarasab, J.-H. Park, S. Y. Lee, S.-H. Ko, J.-S. Shim, S.-J. Chung, H.-J. Cho, D.-D. Kim, J. Controlled Release 2016, 236, 38–46.
- 10J. Chen, J. Ouyang, Q. Chen, C. Deng, F. Meng, J. Zhang, R. Cheng, Q. Lan, Z. Zhong, ACS Appl. Mater. Interfaces 2017, 9, 24140–24147.
- 11T. Kim, H. N. Hyun, R. Heo, K. Nam, K. Yang, Y. M. Kim, Y. S. Lee, J. Y. An, J. H. Park, K. Y. Choi, Y. H. Roh, Chem. Commun. 2020, 56, 6624–6627.
- 12H. Xu, Z. Wang, Y. Li, Y. Guo, H. Zhou, Y. Li, F. Wu, L. Zhang, X. Yang, B. Lu, Z. Huang, W. Xu, P. Xu, RSC Adv. 2016, 6, 40427–40435.
- 13J. F. Stefanick, D. T. Omstead, T. Kiziltepe, B. Bilgicer, Nanoscale 2019, 11, 4414–4427.
- 14Y. Liu, Y. Hui, R. Ran, G.-Z. Yang, D. Wibowo, H.-F. Wang, A. P. J. Middelberg, C.-X. Zhao, Adv. Healthcare Mater. 2018, 7, 1800106.
- 15
- 15aP. Shieh, C. R. Bertozzi, Org. Biomol. Chem. 2014, 12, 9307–9320;
- 15bS. S. Nguyen, J. A. Prescher, Nat. Chem. Rev. 2020, 4, 476–489.
- 16J. C. T. Carlson, L. G. Meimetis, S. A. Hilderbrand, R. Weissleder, Angew. Chem. Int. Ed. 2013, 52, 6917–6920; Angew. Chem. 2013, 125, 7055–7058.
- 17K. Lang, L. Davis, S. Wallace, M. Mahesh, D. J. Cox, M. L. Blackman, J. M. Fox, J. W. Chin, J. Am. Chem. Soc. 2012, 134, 10317–10320.
- 18X. Zhang, J. Gao, Y. Tang, J. Yu, S. S. Liew, C. Qiao, Y. Cao, G. Liu, H. Fan, Y. Xia, J. Tian, K. Pu, Z. Wang, Nat. Commun. 2022, 13, 3513.
- 19J.-J. Shie, Y.-C. Liu, Y.-M. Lee, C. Lim, J.-M. Fang, C.-H. Wong, J. Am. Chem. Soc. 2014, 136, 9953–9961.
- 20P. Shieh, V. T. Dien, B. J. Beahm, J. M. Castellano, T. Wyss-Coray, C. R. Bertozzi, J. Am. Chem. Soc. 2015, 137, 7145–7151.
- 21Y. Dou, Y. Wang, Y. Duan, B. Liu, Q. Hu, W. Shen, H. Sun, Q. Zhu, Chem. Eur. J. 2020, 26, 4576–4582.
- 22
- 22aY. Yuan, S. Xu, X. Cheng, X. Cai, B. Liu, Angew. Chem. Int. Ed. 2016, 55, 6457–6461; Angew. Chem. 2016, 128, 6567–6571;
- 22bF. Hu, D. Mao, Kenry, X. Cai, W. Wu, D. Kong, B. Liu, Angew. Chem. Int. Ed. 2018, 57, 10182–10186; Angew. Chem. 2018, 130, 10339–10343.
- 23W. Lv, S. Chi, W. Feng, T. Liang, D. Song, Z. Liu, Chem. Commun. 2019, 55, 7037–7040.
- 24
- 24aG. Linden, L. Zhang, F. Pieck, U. Linne, D. Kosenkov, R. Tonner, O. Vázquez, Angew. Chem. Int. Ed. 2019, 58, 12868–12873; Angew. Chem. 2019, 131, 13000–13005;
- 24bG. Linden, O. Vázquez, Chem. Eur. J. 2020, 26, 10014–10023;
- 24cY. Zhou, R. C. H. Wong, G. Dai, D. K. P. Ng, Chem. Commun. 2020, 56, 1078–1081.
- 25
- 25aB. L. Oliveira, Z. Guo, G. J. L. Bernardes, Chem. Soc. Rev. 2017, 46, 4895–4950;
- 25bH. Y. Yoon, D. Lee, D.-K. Lim, H. Koo, K. Kim, Adv. Mater. 2022, 34, 2107192.
- 26
- 26aC. S. Kue, S. Y. Ng, S. H. Voon, A. Kamkaew, L. Y. Chung, L. V. Kiew, H. B. Lee, Photochem. Photobiol. Sci. 2018, 17, 1691–1708;
- 26bJ. Wang, Q. Gong, L. Wang, E. Hao, L. Jiao, J. Porphyrins Phthalocyanines 2020, 24, 603–635.
- 27
- 27aX. Guo, R. C. H. Wong, Y. Zhou, D. K. P. Ng, P.-C. Lo, Chem. Commun. 2019, 55, 13518–13521;
- 27bL. Chen, F. Li, M. Nandi, L. Huang, Z. Chen, J. Wei, W. Chi, X. Liu, J. Yang, Dyes Pigm. 2020, 177, 108313.
- 28S. Maiti, P. Paira, Eur. J. Med. Chem. 2018, 145, 206–223.
- 29J. C. H. Chu, W.-P. Fong, C. T. T. Wong, D. K. P. Ng, J. Med. Chem. 2021, 64, 2064–2076.
- 30J. Yang, M. R. Karver, W. Li, S. Sahu, N. K. Devaraj, Angew. Chem. Int. Ed. 2012, 51, 5222–5225; Angew. Chem. 2012, 124, 5312–5315.
- 31
- 31aJ. C. H. Chu, C. Yang, W.-P. Fong, C. T. T. Wong, D. K. P. Ng, Chem. Commun. 2020, 56, 11941–11944;
- 31bJ. C. H. Chu, M. L. Chin, C. T. T. Wong, M. Hui, P.-C. Lo, D. K. P. Ng, Adv. Ther. 2021, 4, 2000204.
- 32S. J. Siegl, J. Galeta, R. Dzijak, M. Dračínský, M. Vrabel, ChemPlusChem 2019, 84, 493–497.
- 33B. Pinto-Pacheco, W. P. Carbery, S. Khan, D. B. Turner, D. Buccella, Angew. Chem. Int. Ed. 2020, 59, 22140–22149; Angew. Chem. 2020, 132, 22324–22333.
- 34P. K.-K. Leung, L. C.-C. Lee, H. H.-Y. Yeung, K.-W. Io, K. K.-W. Lo, Chem. Commun. 2021, 57, 4914–4917.
- 35H. Wu, J. Yang, J. Šečkutė, N. K. Devaraj, Angew. Chem. Int. Ed. 2014, 53, 5805–5809; Angew. Chem. 2014, 126, 5915–5919.
- 36T. Entradas, S. Waldron, M. Volk, J. Photochem. Photobiol. B 2020, 204, 111787.
- 37
- 37aW. X. Ren, J. Han, S. Uhm, Y. J. Jang, C. Kang, J.-H. Kim, J. S. Kim, Chem. Commun. 2015, 51, 10403–10418;
- 37bW. Kim, K.-Y. Na, K.-H. Lee, H. W. Lee, J. K. Lee, K.-T. Kim, Sci. Rep. 2017, 7, 10971.
- 38S. Y. Y. Ha, Y. Zhou, W.-P. Fong, D. K. P. Ng, J. Med. Chem. 2020, 63, 8512–8523.
- 39E. Y. Xue, R. C. H. Wong, C. T. T. Wong, W.-P. Fong, D. K. P. Ng, RSC Adv. 2019, 9, 20652–20662.
- 40J. Gruenberg, Nat. Rev. Mol. Cell Biol. 2001, 2, 721–730.
- 41R. A. Akasov, N. V. Sholina, D. A. Khochenkov, A. V. Alova, P. V. Gorelkin, A. S. Erofeev, A. N. Generalova, E. V. Khaydukov, Sci. Rep. 2019, 9, 9679.
- 42J. Xiong, K.-W. Yeung, C. T. T. Wong, W.-P. Fong, D. K. P. Ng, Colorants 2022, 1, 193–207.
10.3390/colorants1020012 Google Scholar
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.