Alternately π-Stacked Systems Assisted by o-Carborane: Dual Excimer Emission and Color Modulation by Bcage-Methylation
Junki Ochi
Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Kazuo Tanaka
Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510 Japan
Search for more papers by this authorProf. Dr. Yoshiki Chujo
Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510 Japan
Search for more papers by this authorJunki Ochi
Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Kazuo Tanaka
Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510 Japan
Search for more papers by this authorProf. Dr. Yoshiki Chujo
Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510 Japan
Search for more papers by this authorAbstract
Herein, we report the unique solid-state excimer emission of three types of acridine-tethered o-carboranes with variable degrees of methylation at the o-carborane unit. They all showed columnar packing structures based on dimer formation, and two types of π-overlapping motifs were alternately stacked. From the photoluminescence (PL) measurements on the crystalline samples, it was found that three types of luminescence bands can simultaneously appear: monomer emission, excimer emission from the moderately π-stacked intra-dimer unit, and excimer emission from the widely π-stacked inter-dimer unit. Consequently, the PL colors were drastically changed by the steric effect of the methyl groups, with a strong correlation found between the π-overlapping and excimer character. In addition, variable-temperature PL measurements revealed that these PL species should be in thermal equilibrium at room temperature, with the intensity ratios sensitive toward temperature changes.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202214397-sup-0001-misc_information.pdf3.1 MB | Supporting Information |
ange202214397-sup-0001-SI_20210305_Me0.cif452.5 KB | Supporting Information |
ange202214397-sup-0001-SI_20210426_Me8.cif702.9 KB | Supporting Information |
ange202214397-sup-0001-SI_20220502_Me2.cif264.2 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1B. Valeur, M. N. Berberan-Santos, Molecular Fluorescence: Principles and Applications, Second Edition; Wiley, Hoboken, 2012.
10.1002/9783527650002 Google Scholar
- 2T. Schillmöller, R. Herbst-Irmer, D. Stalke, Adv. Opt. Mater. 2021, 9, 2001814.
- 3Y. Ge, Y. Wen, H. Liu, T. Lu, Y. Yu, X. Zhang, B. Li, S.-T. Zhang, W. Li, B. Yang, J. Mater. Chem. C 2020, 8, 11830–11838.
- 4S. Hisamatsu, H. Masu, M. Takahashi, K. Kishikawa, S. Kohmoto, Cryst. Growth Des. 2015, 15, 2291–2302.
- 5Z. Zhang, Y. Zhang, D. Yao, H. Bi, I. Javed, Y. Fan, H. Zhang, Y. Wang, Cryst. Growth Des. 2009, 9, 5069–5076.
- 6J. Ochi, K. Tanaka, Y. Chujo, Inorg. Chem. 2021, 60, 8990–8997.
- 7Y. Shen, H. Liu, J. Cao, S. Zhang, W. Li, B. Yang, Phys. Chem. Chem. Phys. 2019, 21, 14511–14515.
- 8J. B. Birks, A. A. K. Azzazj, Proc. R. Soc. London Ser. A 1968, 304, 291–301.
- 9A. Li, S. Xu, C. Bi, Y. Geng, H. Cui, W. Xu, Mater. Chem. Front. 2021, 5, 2588–2606.
- 10A. Wang, R. Fan, Y. Dong, W. Chen, Y. Song, P. Wang, S. Hao, Z. Liu, Y. Yang, Dalton Trans. 2017, 46, 71–85.
- 11J. Sun, M. Gao, L. Zhao, Y. Zhao, T. Li, K. Chen, X. Hu, L. He, Q. Huang, M. Liu, Y. Song, React. Funct. Polym. 2022, 173, 105213.
- 12J. Ochi, K. Tanaka, Y. Chujo, Angew. Chem. Int. Ed. 2020, 59, 9841–9855; Angew. Chem. 2020, 132, 9925–9939.
- 13J. Yan, W. Yang, Q. Zhang, Y. Yan, Chem. Commun. 2020, 56, 11720–11734.
- 14P. Stockmann, M. Gozzi, R. Kuhnert, M. B. Sárosi, E. Hey-Hawkins, Chem. Soc. Rev. 2019, 48, 3497–3512.
- 15Y. Quan, Z. Xie, Chem. Soc. Rev. 2019, 48, 3660–3673.
- 16X. Wu, J. Guo, J. Zhao, Y. Che, D. Jia, Y. Chen, Dyes Pigm. 2018, 154, 44–51.
- 17K.-R. Wee, Y.-J. Cho, J. K. Song, S. O. Kang, Angew. Chem. Int. Ed. 2013, 52, 9682–9685; Angew. Chem. 2013, 125, 9864–9867.
- 18K. Yuhara, K. Tanaka, Y. Chujo, Mater. Chem. Front. 2022, 6, 1414–1420.
- 19H. Yamamoto, J. Ochi, K. Yuhara, K. Tanaka, Y. Chujo, Cell Rep. Phys. Sci. 2022, 3, 100758.
- 20A. V. Marsh, M. Little, N. J. Cheetham, M. J. Dyson, M. Bidwell, A. J. P. White, C. N. Warriner, A. C. Swain, I. McCulloch, P. N. Stavrinou, M. Heeney, Chem. Eur. J. 2021, 27, 1970–1975.
- 21K. Nishino, H. Yamamoto, J. Ochi, K. Tanaka, Y. Chujo, Chem. Asian J. 2019, 14, 1577–1581.
- 22A. V. Marsh, N. J. Cheetham, M. Little, M. Dyson, A. J. P. White, P. Beavis, C. N. Warriner, A. C. Swain, P. N. Stavrinou, M. Heeney, Angew. Chem. Int. Ed. 2018, 57, 10640–10645; Angew. Chem. 2018, 130, 10800–10805.
- 23K. Nishino, H. Yamamoto, K. Tanaka, Y. Chujo, Asian J. Org. Chem. 2017, 6, 1818–1822.
- 24J. Ochi, K. Tanaka, Y. Chujo, Eur. J. Org. Chem. 2019, 2984–2988.
- 25M. Fox, Coord. Chem. Rev. 2004, 248, 457–476.
- 26D. Tu, P. Leong, Z. Li, R. Hu, C. Shi, K. Y. Zhang, H. Yan, Q. Zhao, Chem. Commun. 2016, 52, 12494–12497.
- 27S. Deb, S. A. Hussain, S. Biswas, D. Bhattacharjee, Spectrochim. Acta Part A 2007, 68, 257–262.
- 28S. Akimoto, A. Ohmori, I. Yamazaki, J. Phys. Chem. B 1997, 101, 3753–3758.
- 29Y. Tsujii, T. Itoh, T. Fukuda, T. Miyamoto, S. Ito, M. Yamamoto, Langmuir 1992, 8, 936–941.
- 30K. Sato, R. Katoh, Chem. Phys. Lett. 2019, 734, 136751.
- 31P. K. Lekha, E. Prasad, Chem. Eur. J. 2010, 16, 3699–3706.
- 32G. Pistolis, Chem. Phys. Lett. 1999, 304, 371–377.
- 33H. Sumi, Chem. Phys. 1989, 130, 433–449.
- 34K. Mizuno, A. Matsui, J. Lumin. 1987, 38, 323–325.
- 35Z. Zheng, W. Jiang, A. A. Zinn, C. B. Knobler, M. F. Hawthorne, Inorg. Chem. 1995, 34, 2095–2100.
- 36A. Herzog, A. Maderna, G. N. Harakas, C. B. Knobler, M. F. Hawthorne, Chem. Eur. J. 1999, 5, 1212–1217.
10.1002/(SICI)1521-3765(19990401)5:4<1212::AID-CHEM1212>3.0.CO;2-W CAS Web of Science® Google Scholar
- 37S. Wang, Y. Shen, X. Zhang, H. Liu, S. T. Zhang, W. Li, B. Yang, Dyes Pigm. 2022, 205, 110527.
- 38Deposition numbers 2202974, 2202975, and 2202976 (for Me0, Me2, and Me8) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 39Y. Gao, H. Liu, S. Zhang, Q. Gu, Y. Shen, Y. Ge, B. Yang, Phys. Chem. Chem. Phys. 2018, 20, 12129–12137.
- 40T. Schillmöller, P. N. Ruth, R. Herbst-Irmer, D. Stalke, Chem. Commun. 2020, 56, 7479–7482.
- 41S. Kohmoto, R. Tsuyuki, H. Masu, I. Azumaya, K. Kishikawa, Tetrahedron Lett. 2008, 49, 39–43.
- 42H. Y. Zhang, Z. L. Zhang, K. Q. Ye, J. Y. Zhang, Y. Wang, Adv. Mater. 2006, 18, 2369–2372.
- 43C. Kaufmann, W. Kim, A. Nowak-Król, Y. Hong, D. Kim, F. Würthner, J. Am. Chem. Soc. 2018, 140, 4253–4258.
- 44R. D. Pensack, R. J. Ashmore, A. L. Paoletta, G. D. Scholes, J. Phys. Chem. C 2018, 122, 21004–21017.
- 45O. P. Dimitriev, Y. P. Piryatinski, Y. L. Slominskii, J. Phys. Chem. Lett. 2018, 9, 2138–2143.
- 46J. W. Lakowicz, Principles of Fluorescence Spectroscopy. Third Eddition. Springer, Berlin, 2006.
10.1007/978-0-387-46312-4 Google Scholar
- 47L. Ji, S. Riese, A. Schmiedel, M. Holzapfel, M. Fest, J. Nitsch, B. F. E. Curchod, A. Friedrich, L. Wu, H. H. Al Mamari, S. Hammer, J. Pflaum, M. A. Fox, D. J. Tozer, M. Finze, C. Lambert, T. B. Marder, Chem. Sci. 2022, 13, 5205–5219.
- 48J. Wu, M. Zhuo, R. Lai, S. Zou, C. Yan, Y. Yuan, S. Yang, G. Wei, X. Wang, L. Liao, Angew. Chem. Int. Ed. 2021, 60, 9114–9119; Angew. Chem. 2021, 133, 9196–9201.
- 49C.-Y. Peng, J.-Y. Shen, Y.-T. Chen, P.-J. Wu, W.-Y. Hung, W.-P. Hu, P.-T. Chou, J. Am. Chem. Soc. 2015, 137, 14349–14357.
- 50J. Ochi, K. Yuhara, K. Tanaka, Y. Chujo, Chem. Eur. J. 2022, 28, e202200155.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.