Electronic Effect-Modulated Enhancements of Proton Conductivity in Porous Organic Polymers
Sun Young Kim
Department of Chemistry, Korea university, Seoul, 02841 Republic of Korea
Search for more papers by this authorMinjung Kang
Department of Chemistry, Korea university, Seoul, 02841 Republic of Korea
Search for more papers by this authorDr. Dong Won Kang
Department of Chemistry, Korea university, Seoul, 02841 Republic of Korea
Search for more papers by this authorHyojin Kim
Department of Chemistry, Korea university, Seoul, 02841 Republic of Korea
Search for more papers by this authorJong Hyeak Choe
Department of Chemistry, Korea university, Seoul, 02841 Republic of Korea
Search for more papers by this authorHongryeol Yun
Department of Chemistry, Korea university, Seoul, 02841 Republic of Korea
Search for more papers by this authorCorresponding Author
Prof. Chang Seop Hong
Department of Chemistry, Korea university, Seoul, 02841 Republic of Korea
Search for more papers by this authorSun Young Kim
Department of Chemistry, Korea university, Seoul, 02841 Republic of Korea
Search for more papers by this authorMinjung Kang
Department of Chemistry, Korea university, Seoul, 02841 Republic of Korea
Search for more papers by this authorDr. Dong Won Kang
Department of Chemistry, Korea university, Seoul, 02841 Republic of Korea
Search for more papers by this authorHyojin Kim
Department of Chemistry, Korea university, Seoul, 02841 Republic of Korea
Search for more papers by this authorJong Hyeak Choe
Department of Chemistry, Korea university, Seoul, 02841 Republic of Korea
Search for more papers by this authorHongryeol Yun
Department of Chemistry, Korea university, Seoul, 02841 Republic of Korea
Search for more papers by this authorCorresponding Author
Prof. Chang Seop Hong
Department of Chemistry, Korea university, Seoul, 02841 Republic of Korea
Search for more papers by this authorAbstract
We proposed a new strategy to maximize the density of acidic groups by modulating the electronic effects of the substituents for high-performance proton conductors. The conductivity of the sulfonated 1-MeL40-S with methyl group corresponds to 2.29×10−1 S cm−1 at 80 °C and 90 % relative humidity, remarkably an 22100-fold enhancement over the nonsulfonated 1-MeL40. 1-MeL40-S maintains long-term conductivity for one month. We confirm that this synthetic method is generalized to the extended version POPs, 2-MeL40-S and 3-MeL40-S. In particular, the conductivities of the POPs compete with those of top-level porous organic conductors. Moreover, the activation energy of the POPs is lower than that of the top-performing materials. This study demonstrates that systematic alteration of the electronic effects of substituents is a useful route to improve the conductivity and long-term durability of proton-conducting materials.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202214301-sup-0001-misc_information.pdf1.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z. Wang, Y. Yang, Z. Zhao, P. Zhang, Y. Zhang, J. Liu, S. Ma, P. Cheng, Y. Chen, Z. Zhang, Nat. Commun. 2021, 12, 1982.
- 2M. Z. Jacobson, W. G. Colella, D. M. Golden, Science 2005, 308, 1901–1905.
- 3C. Laberty-Robert, K. Valle, F. Pereira, C. Sanchez, Chem. Soc. Rev. 2011, 40, 961–1005.
- 4E. B. Trigg, T. W. Gaines, M. Marechal, D. E. Moed, P. Rannou, K. B. Wagener, M. J. Stevens, K. I. Winey, Nat. Mater. 2018, 17, 725–731.
- 5
- 5aS. Das, P. Heasman, T. Ben, S. Qiu, Chem. Rev. 2017, 117, 1515–1563;
- 5bA. Karmakar, R. Illathvalappil, B. Anothumakkool, A. Sen, P. Samanta, A. V. Desai, S. Kurungot, S. K. Ghosh, Angew. Chem. Int. Ed. 2016, 55, 10667–10671; Angew. Chem. 2016, 128, 10825–10829;
- 5cY. Ye, L. Gong, S. Xiang, Z. Zhang, B. Chen, Adv. Mater. 2020, 32, 1907090;
- 5dJ. H. Lee, H. Kim, M. Kang, D. S. Choi, C. S. Hong, Bull. Korean Chem. Soc. 2021, 42, 322–325.
- 6
- 6aC. Fan, H. Geng, H. Wu, Q. Peng, X. Wang, B. Shi, Y. Kong, Z. Yin, Y. Liu, Z. Jiang, J. Mater. Chem. A 2021, 9, 17720–17723;
- 6bC. Fan, H. Wu, J. Guan, X. You, C. Yang, X. Wang, L. Cao, B. Shi, Q. Peng, Y. Kong, Y. Wu, N. A. Khan, Z. Jiang, Angew. Chem. Int. Ed. 2021, 60, 18051–18058; Angew. Chem. 2021, 133, 18199–18206;
- 6cH. S. Sasmal, H. B. Aiyappa, S. N. Bhange, S. Karak, A. Halder, S. Kurungot, R. Banerjee, Angew. Chem. Int. Ed. 2018, 57, 10894–10898; Angew. Chem. 2018, 130, 11060–11064;
- 6dY. Yang, X. He, P. Zhang, Y. H. Andaloussi, H. Zhang, Z. Jiang, Y. Chen, S. Ma, P. Cheng, Z. Zhang, Angew. Chem. Int. Ed. 2020, 59, 3678–3684; Angew. Chem. 2020, 132, 3707–3713;
- 6eS. Kim, B. Joarder, J. A. Hurd, J. Zhang, K. W. Dawson, B. S. Gelfand, N. E. Wong, G. K. H. Shimizu, J. Am. Chem. Soc. 2018, 140, 1077–1082;
- 6fY. Ye, W. Guo, L. Wang, Z. Li, Z. Song, J. Chen, Z. Zhang, S. Xiang, B. Chen, J. Am. Chem. Soc. 2017, 139, 15604–15607.
- 7
- 7aM. Inukai, S. Horike, T. Itakura, R. Shinozaki, N. Ogiwara, D. Umeyama, S. S. Nagarkar, Y. Nishiyama, M. Malon, A. Hayashi, T. Ohhara, R. Kiyanagi, S. Kitagawa, J. Am. Chem. Soc. 2016, 138, 8505–8511;
- 7bM.-J. Wei, J.-Q. Fu, Y.-D. Wang, J.-Y. Gu, B.-L. Liu, H.-Y. Zang, E.-L. Zhou, K.-Z. Shao, Z.-M. Su, J. Mater. Chem. A 2017, 5, 1085–1093;
- 7cG.-R. Si, F. Yang, T. He, X.-J. Kong, W. Wu, T.-C. Li, K. Wang, J.-R. Li, J. Mater. Chem. A 2022, 10, 1236–1240.
- 8
- 8aL. Liu, L. Yin, D. Cheng, S. Zhao, H. Y. Zang, N. Zhang, G. Zhu, Angew. Chem. Int. Ed. 2021, 60, 14875–14880; Angew. Chem. 2021, 133, 15001–15006;
- 8bD. W. Kang, K. S. Lim, K. J. Lee, J. H. Lee, W. R. Lee, J. H. Song, K. H. Yeom, J. Y. Kim, C. S. Hong, Angew. Chem. Int. Ed. 2016, 55, 16123–16126; Angew. Chem. 2016, 128, 16357–16360;
- 8cD. W. Kang, J. H. Song, K. J. Lee, H. G. Lee, J. E. Kim, H. Y. Lee, J. Y. Kim, C. S. Hong, J. Mater. Chem. A 2017, 5, 17492–17498;
- 8dY. Peng, G. Xu, Z. Hu, Y. Cheng, C. Chi, D. Yuan, H. Cheng, D. Zhao, ACS Appl. Mater. Interfaces 2016, 8, 18505–18512.
- 9D. W. Kang, M. Kang, C. S. Hong, J. Mater. Chem. A 2020, 8, 7474–7494.
- 10D. W. Kang, K. A. Lee, M. Kang, J. M. Kim, M. Moon, J. H. Choe, H. Kim, D. W. Kim, J. Y. Kim, C. S. Hong, J. Mater. Chem. A 2020, 8, 1147–1153.
- 11
- 11aA. P. Katsoulidis, M. G. Kanatzidis, Chem. Mater. 2011, 23, 1818–1824;
- 11bW. Lu, M. Bosch, D. Yuan, H. C. Zhou, ChemSusChem 2015, 8, 433–438.
- 12
- 12aD. W. Kang, M. Kang, D. W. Kim, H. Kim, Y. H. Lee, H. Yun, J. H. Choe, C. S. Hong, Adv. Sustainable Syst. 2021, 5, 2000161;
- 12bJ. M. Lee, A. I. Cooper, Chem. Rev. 2020, 120, 2171–2214.
- 13
- 13aL. Miao, D. Zhu, Y. Zhao, M. Liu, H. Duan, W. Xiong, Q. Zhu, L. Li, Y. Lv, L. Gan, Microporous Mesoporous Mater. 2017, 253, 1–9;
- 13bJ. Laskowski, B. Milow, L. Ratke, Microporous Mesoporous Mater. 2014, 197, 308–315.
- 14
- 14aR. Gomes, P. Bhanja, A. Bhaumik, J. Mol. Catal. A 2016, 411, 110–116;
- 14bA. del Prado, N. Briz, R. Navarro, M. Pérez, A. Gallardo, H. Reinecke, Macromolecules 2012, 45, 2648–2653.
- 15N. Park, Y. N. Lim, S. Y. Kang, S. M. Lee, H. J. Kim, Y. J. Ko, B. Y. Lee, H. Y. Jang, S. U. Son, ACS Macro Lett. 2016, 5, 1322–1326.
- 16D. W. Kang, M. Kang, M. Moon, H. Kim, S. Eom, J. H. Choe, W. R. Lee, C. S. Hong, Chem. Sci. 2018, 9, 6871–6877.
- 17
- 17aA. Kraytsberg, Y. Ein-Eli, Energy Fuels 2014, 28, 7303–7330;
- 17bS. J. Peighambardoust, S. Rowshanzamir, M. Amjadi, Int. J. Hydrogen Energy 2010, 35, 9349–9384.
- 18
- 18aN. T. Nguyen, H. Furukawa, F. Gandara, C. A. Trickett, H. M. Jeong, K. E. Cordova, O. M. Yaghi, J. Am. Chem. Soc. 2015, 137, 15394–15397;
- 18bV. G. Ponomareva, K. A. Kovalenko, A. P. Chupakhin, D. N. Dybtsev, E. S. Shutova, V. P. Fedin, J. Am. Chem. Soc. 2012, 134, 15640–15643.
- 19S. C. Pal, M. C. Das, Adv. Funct. Mater. 2021, 31, 2101584.
- 20X. Wang, B. Shi, H. Yang, J. Guan, X. Liang, C. Fan, X. You, Y. Wang, Z. Zhang, H. Wu, T. Cheng, R. Zhang, Z. Jiang, Nat. Commun. 2022, 13, 1020.
- 21T. Zhu, B. Shi, H. Wu, X. You, X. Wang, C. Fan, Q. Peng, Z. Jiang, Ind. Eng. Chem. Res. 2021, 60, 6337–6343.
- 22
- 22aK. Divya, D. Rana, M. S. Sri Abirami Saraswathi, A. Nagendran, J. Appl. Polym. Sci. 2022, 139, 52610;
- 22bM. J. Parnian, S. Rowshanzamir, F. Gashoul, Energy 2017, 125, 614–628.
- 23S. Banerjee, K. K. Kar, Polymer 2017, 109, 176–186.
- 24T. J. Peckham, S. Holdcroft, Adv. Mater. 2010, 22, 4667–4690.
- 25Z. Meng, A. Aykanat, K. A. Mirica, Chem. Mater. 2019, 31, 819–825.
- 26Q. Liao, C. Ke, X. Huang, D. Wang, Q. Han, Y. Zhang, Y. Zhang, K. Xi, Angew. Chem. Int. Ed. 2021, 60, 1411–1416; Angew. Chem. 2021, 133, 1431–1436.
- 27
- 27aS. Chand, S. M. Elahi, A. Pal, M. C. Das, Chem. Eur. J. 2019, 25, 6259–6269;
- 27bD. W. Lim, H. Kitagawa, Chem. Rev. 2020, 120, 8416–8467;
- 27cS.-S. Liu, Q.-Q. Liu, S.-Z. Huang, C. Zhang, X.-Y. Dong, S.-Q. Zang, Coord. Chem. Rev. 2022, 451, 214241.
- 28J. Chen, Q. Mei, Y. Chen, C. Marsh, B. An, X. Han, I. P. Silverwood, M. Li, Y. Cheng, M. He, X. Chen, W. Li, M. Kippax-Jones, D. Crawshaw, M. D. Frogley, S. J. Day, V. Garcia-Sakai, P. Manuel, A. J. Ramirez-Cuesta, S. Yang, M. Schroder, J. Am. Chem. Soc. 2022, 144, 11969–11974.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.