Hierarchical Integration of Organic Core/Shell Microwires for Advanced Photonics
Hong-Tao Lin
School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorYing-Xin Ma
School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorSong Chen
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123 China
Search for more papers by this authorCorresponding Author
Prof. Xue-Dong Wang
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123 China
Search for more papers by this authorHong-Tao Lin
School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorYing-Xin Ma
School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorSong Chen
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123 China
Search for more papers by this authorCorresponding Author
Prof. Xue-Dong Wang
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123 China
Search for more papers by this authorAbstract
The combination of multiple components or structures into integrated micro/nanostructures for practical application has been pursued for many years. Herein, a series of hierarchical organic microwires with branch, core/shell (C/S), and branch C/S structures are successfully constructed based on organic charge transfer (CT) cocrystals with structural similarity and physicochemical tunability. By regulating the intermolecular CT interaction, single microwires and branch microstructures can be integrated into the C/S and branch C/S structures, respectively. Significantly, the integrated branch C/S microwires, with multicolor waveguide behavior and branch structure multichannel waveguide output characteristics, can function as an optical logic gate with multiple encoding features. This work provides useful insights for creating completely new types of organic microstructures for integrated optoelectronics.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202214214-sup-0001-misc_information.pdf1.7 MB | Supporting Information |
ange202214214-sup-0001-SI_2131128.cif374.8 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aH. Mistry, A. S. Varela, S. Kühl, P. Strasser, B. R. Cuenya, Nat. Rev. Mater. 2016, 1, 16009;
- 1bK. A. Kuttiyiel, K. Sasaki, D. Su, L. Wu, Y. Zhu, R. R. Adzic, Nat. Commun. 2014, 5, 5185;
- 1cR. He, Y. C. Wang, X. Wang, Z. Wang, G. Liu, W. Zhou, J. G. Hou, Nat. Commun. 2014, 5, 4327;
- 1dC. L. Tan, J. Z. Chen, X. J. Wu, H. Zhang, Nat. Rev. Mater. 2018, 3, 17089;
- 1eJ. E. Anthony, Chem. Rev. 2006, 106, 5028–5048;
- 1fJ. Y. Tang, Z. Y. Huo, S. Brittman, H. W. Gao, P. D. Yang, Nat. Nanotechnol. 2011, 6, 568–572;
- 1gL. J. Lauhon, M. S. Gudiksen, D. Wang, C. M. Lieber, Nature 2002, 420, 57–61.
- 2
- 2aN. K. Duggirala, M. L. Perry, Ö. Almarsson, M. J. Zaworotko, Chem. Commun. 2016, 52, 640–655;
- 2bÖ. Almarsson, M. J. Zaworotko, Chem. Commun. 2004, 1889–1896.
- 3
- 3aS. Zhang, Y. Hao, D. Su, V. V. Doan-Nguyen, Y. Wu, J. Li, C. B. Murray, J. Am. Chem. Soc. 2014, 136, 15921–15924;
- 3bJ. Li, H. M. Yin, X. B. Li, E. Okunishi, Y. L. Shen, J. He, Y. Ding, Nat. Energy 2017, 2, 17111.
- 4Y. Yang, W. Chen, L. T. Dou, W. H. Chang, H. S. Duan, B. Bob, G. Li, Y. Yang, Nat. Photonics 2015, 9, 190–198.
- 5
- 5aR. Chandrasekar, Small 2021, 17, 2100277;
- 5bX. T. Zhang, H. L. Dong, W. P. Hu, Adv. Mater. 2018, 30, 1801048;
- 5cL. J. Sun, W. G. Zhu, X. T. Zhang, L. Q. Li, H. L. Dong, W. P. Hu, J. Am. Chem. Soc. 2021, 143, 19243–19256.
- 6
- 6aK. A. Dick, K. Deppert, M. W. Larsson, T. årtensson, W. Seifert, L. R. Wallenberg, L. Samuelson, Nat. Mater. 2004, 3, 380–384;
- 6bM. J. Bierman, Y. K. A. Lau, A. V. Kvit, A. L. Schmitt, S. Jin, Science 2008, 320, 1060–1063.
- 7
- 7aJ. Clark, G. Lanzani, Nat. Photonics 2010, 4, 438–446;
- 7bG. Q. Wei, X. D. Wang, L. S. Liao, Adv. Funct. Mater. 2019, 29, 1902981.
- 8G. Y. Zhao, H. L. Dong, Q. Liao, J. Jiang, Y. Luo, H. B. Fu, W. P. Hu, Nat. Commun. 2018, 9, 4790.
- 9Y. M. Wu, X. J. Zhang, H. H. Pan, X. W. Zhang, Y. P. Zhang, X. Z. Zhang, J. S. Jie, Nanotechnology 2013, 24, 355201.
- 10
- 10aS. Chen, X. D. Wang, M. P. Zhuo, G. Q. Wei, J. J. Wu, L. S. Liao, Adv. Opt. Mater. 2021, 9, 2101931;
- 10bX. D. Wang, Q. Liao, Q. H. Kong, Y. Zhang, Z. Z. Xu, X. M. Lu, H. B. Fu, Angew. Chem. Int. Ed. 2014, 53, 5863–5867; Angew. Chem. 2014, 126, 5973–5977;
- 10cX. D. Wang, Z. Z. Li, M. P. Zhuo, Y. S. Wu, S. Chen, J. N. Yao, H. B. Fu, Adv. Funct. Mater. 2017, 27, 1703470.
- 11
- 11aQ. H. Cui, Q. Peng, Y. Luo, Y. Q. Jiang, Y. L. Yan, C. Wei, Z. G. Shuai, C. Sun, J. N. Yao, Y. S. Zhao, Sci. Adv. 2018, 4, eaap9861;
- 11bY. F. Zhang, C. Peng, B. Cui, Z. F. Wang, X. B. Pang, R. M. Ma, F. Liu, Y. K. Che, J. C. Zhao, Adv. Mater. 2016, 28, 8538–8545;
- 11cH. P. Liu, Z. Q. Lu, Z. L. Zhang, Y. Wang, H. Y. Zhang, Angew. Chem. Int. Ed. 2018, 57, 8448–8452; Angew. Chem. 2018, 130, 8584–8588.
- 12C. J. Barrelet, A. B. Greytak, C. M. Lieber, Nano Lett. 2004, 4, 1981–1985.
- 13
- 13aQ. Lv X D Wang, Y. Yu, M. P. Zhuo, M. Zheng, L. S. Liao, Nat. Commun. 2022, 13, 3099;
- 13bJ. Wu, Q. Li, G. Xue, H. Chen, H. Li, Adv. Mater. 2017, 29, 1606101.
- 14
- 14aD. Yan, A. Delori, G. O. Lloyd, T. Friscic, G. M. Day, W. Jones, J. Lu, M. Wei, D. G. Evans, X. A. Duan, Angew. Chem. Int. Ed. 2011, 50, 12483–12486; Angew. Chem. 2011, 123, 12691–12694;
- 14bL. J. Sun, W. G. Zhu, F. X. Yang, B. L. Li, X. C. Ren, X. T. Zhang, W. P. Hu, Phys. Chem. Chem. Phys. 2018, 20, 6009–6023.
- 15I. Adams, G. M. Bancroft, Nature 1974, 250, 219–220.
- 16F. Perrin, J. Phys. Radium. 1926, 7, 390–401.
- 17
- 17aQ. Bao, B. M. Goh, B. Yan, T. Yu, Z. Shen, K. P. Loh, Adv. Mater. 2010, 22, 3661–3666;
- 17bY. S. Zhao, J. J. Xu, A. Peng, H. B. Fu, Y. Ma, L. Jiang, J. N. Yao, Angew. Chem. Int. Ed. 2008, 47, 7301–7305; Angew. Chem. 2008, 120, 7411–7415;
- 17cS. Guo, R. Liu, C. Niu, D. Weller, Y. Hao, M. Zhang, A. Pan, Adv. Opt. Mater. 2018, 6, 1800305.
- 18
- 18aM. P. Zhuo, Y. Yuan, Y. Su, S. Chen, Y. T. Chen, Z. Q. Feng, Y. K. Qu, M. D. Li, Y. Li, B. W. Hu, X. D. Wang, L. S. Liao, Adv. Mater. 2022, 34, 2107169;
- 18bM. P. Zhuo, Y. C. Tao, X. D. Wang, Y. Wu, S. Chen, L. S. Liao, L. Jiang, Angew. Chem. Int. Ed. 2018, 57, 11300–11304; Angew. Chem. 2018, 130, 11470–11474;
- 18cY. Liu, H. Hu, L. Xu, B. Qiu, J. Liang, F. Ding, K. Wang, M. Chu, W. Zhang, M. Ma, B. Chen, X. Yang, Y. S. Zhao, Angew. Chem. Int. Ed. 2020, 59, 4456–4463; Angew. Chem. 2020, 132, 4486–4493.
- 19
- 19aW. Zhu, L. Zhu, Y. Zou, Y. Wu, Y. Zhen, H. Dong, H. Fu, Z. Wei, Q. Shi, W. Hu, Adv. Mater. 2016, 28, 5954–5962;
- 19bX. Han, Y. Lei, Q. Liao, H. Fu, Angew. Chem. Int. Ed. 2021, 60, 3037–3046; Angew. Chem. 2021, 133, 3074–3083.
- 20M. P. Zhuo, Y. Su, Y. K. Qu, S. Chen, G. P. He, Y. Yuan, H. Liu, Y. C. Tao, X. D. Wang, L. S. Liao, Adv. Mater. 2021, 33, 2102719.
- 21Y. L. Yan, C. Zhang, J. N. Yao, Y. S. Zhao, Adv. Mater. 2013, 25, 3627–3638.
- 22
- 22aY. Zhang, Q. Liao, X. G. Wang, J. N. Yao, H. B. Fu, Angew. Chem. Int. Ed. 2017, 56, 3616–3620; Angew. Chem. 2017, 129, 3670–3674;
- 22bQ. H. Kong, Q. Liao, Z. Z. Xu, X. D. Wang, J. N. Yao, H. B. Fu, J. Am. Chem. Soc. 2014, 136, 2382–2388.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.