Circularly Polarized Laser Emission from Homochiral Superstructures based on Achiral Molecules with Conformal Flexibility
Zheng-Fei Liu
Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Search for more papers by this authorDr. Jiahuan Ren
Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048 P. R. China
Search for more papers by this authorDr. Pan Li
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
Search for more papers by this authorProf. Li-Ya Niu
Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Qing Liao
Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Shaodong Zhang
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Qing-Zheng Yang
Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Search for more papers by this authorZheng-Fei Liu
Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Search for more papers by this authorDr. Jiahuan Ren
Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048 P. R. China
Search for more papers by this authorDr. Pan Li
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
Search for more papers by this authorProf. Li-Ya Niu
Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Qing Liao
Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Shaodong Zhang
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Qing-Zheng Yang
Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Search for more papers by this authorAbstract
Without external chiral intervention, it is a challenge to form homochirality from achiral molecules with conformational flexibility. We here report on a rational strategy that uses multivalent noncovalent interactions to clamp the molecular conformations of achiral D-A molecules. These interactions overcome the otherwise dominant dipole-dipole interactions and thus disfavor their symmetric antiparallel stacking. It in turn facilitates parallel packing, leading to spontaneous symmetry breaking during crystallization and thus the formation of homochiral conglomerates. When this emergent homochirality is coupled with optical gain characteristics of the molecules, the homochiral crystals are explored as excellent circularly polarized micro-lasers with low lasing threshold (16.4 μJ cm−2) and high dissymmetry factor glum (0.9). This study therefore provides a facile design strategy for supramolecular chiral materials and active laser ones without the necessity of intrinsic chiral element.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202214211-sup-0001-misc_information.pdf9.5 MB | Supporting Information |
ange202214211-sup-0001-SI_INNS.cif316 KB | Supporting Information |
ange202214211-sup-0001-SI_M-SNNS.cif210.3 KB | Supporting Information |
ange202214211-sup-0001-SI_NNS.cif316 KB | Supporting Information |
ange202214211-sup-0001-SI_P-SNNS.cif227.1 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. D. Watson, F. H. C. Crick, Nature 1953, 171, 737–738;
- 1bA. Klug, Philos. Trans. R. Soc. London Ser. B 1999, 354, 531–535;
- 1cD. G. Blackmond, Cold Spring Harbor Perspect. Biol. 2010, 2, a002147.
- 2
- 2aI. D. Gridnev, J. M. Brown, Proc. Natl. Acad. Sci. USA 2004, 101, 5727–5731;
- 2bJ. T. Sczepanski, G. F. Joyce, Nature 2014, 515, 440–442;
- 2cC. Roche, H.-J. Sun, P. Leowanawat, F. Araoka, B. E. Partridge, M. Peterca, D. A. Wilson, M. E. Prendergast, P. A. Heiney, R. Graf, H. W. Spiess, X. Zeng, G. Ungar, V. Percec, Nat. Chem. 2016, 8, 80–88;
- 2dM. L. Ślęczkowski, M. F. J. Mabesoone, P. Ślęczkowski, A. R. A. Palmans, E. W. Meijer, Nat. Chem. 2021, 13, 200–207.
- 3L. Pasteur, Ann. Chim. Phys. 1848, 24, 442–459.
- 4
- 4aC. P. Brock, W. B. Schweizer, J. D. Dunitz, J. Am. Chem. Soc. 1991, 113, 9811–9820;
- 4bC. P. Brock, J. D. Dunitz, Chem. Mater. 1994, 6, 1118–1127.
- 5
- 5aC. Viedma, Phys. Rev. Lett. 2005, 94, 065504;
- 5bJ. Kang, D. Miyajima, Y. Itoh, T. Mori, H. Tanaka, M. Yamauchi, Y. Inoue, S. Harada, T. Aida, J. Am. Chem. Soc. 2014, 136, 10640–10644;
- 5cP. Li, Z. Sun, J. Chen, Y. Zuo, C. Yu, X. Liu, Z. Yang, L. Chen, E. Fu, W. Wang, Z. Liu, J. Hu, S. Zhang, J. Am. Chem. Soc. 2022, 144, 1342–1350.
- 6
- 6aD. R. Link, G. Natale, R. Shao, J. E. Maclennan, N. A. Clark, E. Körblova, D. M. Walba, Science 1997, 278, 1924–1927;
- 6bL. E. Hough, M. Spannuth, M. Nakata, D. A. Coleman, C. D. Jones, G. Dantlgraber, C. Tschierske, J. Watanabe, E. Körblova, D. M. Walba, J. E. Maclennan, M. A. Glaser, N. A. Clark, Science 2009, 325, 452–456;
- 6cC. Dressel, T. Reppe, M. Prehm, M. Brautzsch, C. Tschierske, Nat. Chem. 2014, 6, 971–977;
- 6dY. Cao, M. Alaasar, L. Zhang, C. Zhu, C. Tschierske, F. Liu, J. Am. Chem. Soc. 2022, 144, 6936–6945.
- 7
- 7aE. Pidcock, Chem. Commun. 2005, 3457–3459;
- 7bX. Liu, G. Zhu, D. He, L. Gu, P. Shen, G. Cui, S. Wang, Z. Shi, D. Miyajima, S. Wang, S. Zhang, CCS Chem. 2022, 4, 2420–2428.
- 8
- 8aJ. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, Y. Zou, Joule 2019, 3, 1140–1151;
- 8bJ. Kosco, S. Gonzalez-Carrero, C. T. Howells, T. Fei, Y. Dong, R. Sougrat, G. T. Harrison, Y. Firdaus, R. Sheelamanthula, B. Purushothaman, F. Moruzzi, W. Xu, L. Zhao, A. Basu, S. D. Wolf, T. D. Anthopoulos, J. R. Durrant, I. McCulloch, Nat. Energy 2022, 7, 340–351;
- 8cH. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234–238.
- 9
- 9aH. Bürckstümmer, E. Tulyakova, M. Deppisch, M. Lenze, N. Kronenberg, M. Gsanger, M. Stolte, K. Meerholz, F. Würthner, Angew. Chem. Int. Ed. 2011, 50, 11628–11632; Angew. Chem. 2011, 123, 11832–11836;
- 9bM. Luo, X. Li, L. Ding, G. Baryshnikov, S. Shen, M. Zhu, L. Zhou, M. Zhang, J. Lu, H. Ågren, X.-D. Wang, L. Zhu, Angew. Chem. Int. Ed. 2020, 59, 17018–17025; Angew. Chem. 2020, 132, 17166–17173.
- 10
- 10aP. Osswald, F. Würthner, J. Am. Chem. Soc. 2007, 129, 14319–14326;
- 10bS. R. LaPlante, P. J. Edwards, L. D. Fader, A. Jakalian, O. Hucke, ChemMedChem 2011, 6, 505–513.
- 11
- 11aK. U. Linderstrøm-Lang, Stanford Univ. Publ. Med. Series 1952, 6, 1–115;
- 11bY. Kim, H. Li, Y. He, X. Chen, X. Ma, M. Lee, Nat. Nanotechnol. 2017, 12, 551–556.
- 12
- 12aK. Yano, Y. Itoh, F. Araoka, G. Watanabe, T. Hikima, T. Aida, Science 2019, 363, 161–165;
- 12bH. Lu, X. Zhang, T. Sakurai, X. Li, Y. Tu, J. Guo, S. Seki, C. Y. Li, G. Ungar, S. Z. D. Cheng, Nano Lett. 2020, 20, 8647–8653.
- 13
- 13aM. Huang, C.-H. Hsu, J. Wang, S. Mei, X. Dong, Y. Li, M. Li, H. Liu, W. Zhang, T. Aida, W.-B. Zhang, K. Yue, S. Z. D. Cheng, Science 2015, 348, 424–428;
- 13bK. Kim, M. W. Schulze, A. Arora, R. M. Lewis, M. A. Hillmyer, K. D. Dorfman, F. S. Bates, Science 2017, 356, 520–523;
- 13cW. Zheng, T. Ikai, E. Yashima, Angew. Chem. Int. Ed. 2021, 60, 11294–11299; Angew. Chem. 2021, 133, 11394–11399.
- 14
- 14aL. Wang, B. E. Partridge, N. Huang, J. T. Olsen, D. Sahoo, X. Zeng, G. Ungar, R. Graf, H. W. Spiess, V. Percec, J. Am. Chem. Soc. 2020, 142, 9525–9536;
- 14bV. Percec, S. Wang, N. Huang, B. E. Partridge, X. Wang, D. Sahoo, D. J. Hoffman, J. Malineni, M. Peterca, R. L. Jezorek, N. Zhang, H. Daud, P. D. Sung, E. R. McClure, S. L. Song, J. Am. Chem. Soc. 2021, 143, 17724–17743.
- 15
- 15aD.-W. Zhang, M. Li, C.-F. Chen, Chem. Soc. Rev. 2020, 49, 1331–1343;
- 15bL. E. Mackenzie, R. Pal, Nat. Chem. Rev. 2021, 5, 109–124;
- 15cY. Wang, D. Niu, G. Ouyang, M. Liu, Nat. Commun. 2022, 13, 1710;
- 15dL. Cheng, K. Liu, Y. Duan, H. Duan, Y. Li, M. Gao, L. Cao, CCS Chem. 2020, 2, 2749–2763.
- 16
- 16aM.-X. Yu, C.-P. Liu, Y.-F. Zhao, S.-C. Li, Y.-L. Yu, J.-Q. Lv, L. Chen, F.-L. Jiang, M.-C. Hong, Angew. Chem. Int. Ed. 2022, 61, e202201590; Angew. Chem. 2022, 134, e202201590;
- 16bB. Yang, G. Zou, S. Zhang, H. Ni, H. Wang, W. Xu, C. Yang, H. Zhang, W. Yu, K. Luo, Angew. Chem. Int. Ed. 2021, 60, 10531–10536; Angew. Chem. 2021, 133, 10625–10630;
- 16cM. Zhou, Y. Sang, X. Jin, S. Chen, J. Guo, P. Duan, M. Liu, ACS Nano 2021, 15, 2753–2761.
- 17N. Harada, N. Berova, Compr. Chirality 2012, 8, 449–477.
- 18T. Mori, Chem. Rev. 2021, 121, 2373–2412.
- 19
- 19aM. Lindemann, G. Xu, T. Pusch, R. Michalzik, M. R. Hofmann, I. Zutic, N. C. Gerhardt, Nature 2019, 568, 212–215;
- 19bX. Zhan, F. F. Xu, Z. Zhou, Y. Yan, J. Yao, Y. S. Zhao, Adv. Mater. 2021, 33, 2104418;
- 19cZ. Yuan, Y. Zhou, Z. Qiao, C. Eng Aik, W. C. Tu, X. Wu, Y.-C. Chen, ACS Nano 2021, 15, 8965–8975.
- 20J. Jiménez, L. Cerdan, F. Moreno, B. L. Maroto, I. Garcia-Moreno, J. L. Lunkley, G. Muller, S. Moya, J. Phys. Chem. C 2017, 121, 5287–5292.
- 21R. T. Kuznetsova, A. A. Shaposhnikov, D. N. Filinov, T. N. Kopylova, E. N. Tel'minov, Opt. Spectrosc. 2003, 95, 447–454.
- 22
- 22aL. Cerdán, F. Moreno, M. Johnson, G. Muller, S. Moya, I. Garcia-Moreno, Phys. Chem. Chem. Phys. 2017, 19, 22088–22093;
- 22bZ.-L. Gong, X. Zhu, Z. Zhou, S.-W. Zhang, D. Yang, B. Zhao, Y.-P. Zhang, J. Deng, Y. Cheng, Y.-X. Zheng, S.-Q. Zang, H. Kuang, P. Duan, M. Yuan, C.-F. Chen, Y. S. Zhao, Y.-W. Zhong, B. Z. Tang, M. Liu, Sci. China Chem. 2021, 64, 2060–2104.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.